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Abstract—In this paper, we present the deployment of a
monitoring-flow based network verification and failure local-
ization approach for SDN networks. It not only minimizes the
number of static forwarding rules but also significantly reduces
the control plane load, i.e., reduces the total number of messages
needed for network verification and failure localization. Our
flexible hybrid implementation consists of MikroTik RB2011iLS-
IN and Open vSwitch (Mininet) switches, enabling the user to test
network verification and failure localization in a more complex
manner even if the number of physical devices is limited.

Index Terms—failure detection, failure localization, Chinese
Postman Problem, Software Defined Networks, OpenFlow

I. INTRODUCTION

Network verification and failure localization are essential for
providing reliable services in SDN networks. However, today’s
OpenFlow based SDN architectures do not support protocols
for neighborhood and topology discovery. Other solutions
require control signaling between the switches [1]. Note that
some controller frameworks utilize existing control plane
solutions like Link Layer Discovery Protocol (LLDP) [2],
however, continuous monitoring via LLDP is not a feasible
approach [1] since this leads to an excessive number of
messages which must be handled by slow software agents
resulting in congestion.

In [1] an innovative solution was presented, where con-
trollers deploy forwarding rules and utilize control flows (i.e.,
monitoring-flows) dedicated to topology verification and fail-
ure localization. The key idea that controllers periodically send
probing messages in the network along the deployed routes, to
check the status of the links it traverses. In the current work,
we present an implementation of this method using OpenFlow,
Mininet and MikroTik RB2011iLS-IN switches. In this paper,
we overview the main challenges faced during the deployment.

II. ARCHITECTURE

Figure 1(A) shows the architecture of the monitoring flow-
based network verification and failure localization demo, while
Figure 1(B) shows the flowchart of the POX controller appli-
cation. The state machine represents the network verification
process, where the execution is sequential after connecting the
switches to the application.

We differentiate between two modes/states of our software:
1) Network verification: After the initialization of the con-

troller application, it imports the detected network topol-
ogy, computes a route (i.e., monitoring-flow) and identi-
fies the required forwarding rules that will be deployed in

the switches afterward [1]. The heart of the optimization
is the Chinese Postman Problem (CPP) solver with a rule
optimization module. Finally, the network verification
is performed by sending heartbeat-like packages with
a given (adjustable) frequency along the pre-configured
monitoring-flow. As soon as the monitoring package
transgressed the walk, it gets returned to the controller,
implying that the network is intact.

2) Failure localization: In a less fortunate case, one of the
switches fails to forward the packet due to link failure and
the application switches its state to failure localization.
As proposed in the original paper [1], the controller
application uses a binary search to locate the single link
failure along the route of the monitoring-flow by send-
ing out packets while gradually shrinking the inspected
interval. The packets, responsible for the localization
are bounced back from the switches specified by their
headers. Controller application loads these bounce-back
rules during initialization.

Our physical test environment in the demo architecture
(Fig. 1(A)) consists of an Apache web server, web clients
and commercially available MikroTik RB2011iLS-IN routers
compatible with the 1.0 OpenFlow protocol. The routers are
programmed by a POX based highly portable Python controller
application. Our implementation is capable of connecting
physical and virtual networks (through Mininet), enabling the
user to test failure detection and localization more complexly.
Meaning that the user can initialize virtual SDN switches
using Mininet and an arbitrary number of virtual-physical
network interface pairs can be defined to create connections
in the hybrid network. From SDN routing perspectives, SDN
software switches are entirely identical to the Mikrotik routers,
and we utilize this transparency in our framework.

We develop a Graphical User Interface (GUI) to enhance
usability and visualize its operation, which is capable of
displaying the network graph, launching the application and
warning the user if a single link failure occurs. The GUI
runs entirely independently (because of security reasons) from
the controller application, they communicate using the web
server’s endpoint, and the GUI is updated using AJAX.

III. USE CASES FOR DEMONSTRATION

Our implementation can handle arbitrary topologies, and we
demonstrate the operation of our software which minimizes the
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Fig. 1: Architecture of the Optimal Single Link Failure Localization Software Package

number of static forwarding rules needed and also significantly
reduces the control plane load on various networks.

Topologies, where the walk transgresses many links more
than once, are especially challenging because the implemen-
tation of the forwarding rules and the VLAN tagging is not
straightforward. The VLAN tags are used for various purposes.
First of all, we differentiate forwarding paths from one end to
another and the path that transgresses the opposite direction.
In addition to this, we use VLAN tags to mark the sequence
of the nodes on a given walk. One of many exciting issues
originates from the fact that real networks posses delays due
to various factors that are omitted from a theoretical work
[1]. Our implementation solves this problem by measuring
the delays in the actual network and automatically adjusts the
thresholds based on the measured delays. This measurement is
performed during the initialization phase. The measured round
trip time (RTT) and standard deviation (σ) with respect to
the number of Open vSwitches (Ring size) is presented in
Table I. RTT grows with the number of switches, however the

Ring size 20 70 100 150 200
RTT 11.0 ms 27.4 ms 27.7 ms 43.4 ms 48.3 ms
σ 0.3 ms 7.0 ms 7.7 ms 4.3 ms 13.0 ms

TABLE I: Round trip times (RTT) and their standard deviation
in the virtual network with respect to the number of switches

dependency doesn’t seem to be rigorously linear. This might
be related to resource instabilities in the virtual environment.

During the demo session, we will demonstrate failure detec-
tion an localization using various network sizes and point out
the importance of the self-calibrating RTT module that adjusts
the detection threshold based on the measured round trip time
in the network.

IV. CONCLUSIONS

We presented an implementation of a new monitoring-flow
based network verification and failure localization framework

[1] which minimizes the number of static forwarding rules
and significantly reduces the control plane load. Our imple-
mentation is capable of connecting physical (commercially
available MikroTik RB2011iLS-IN routers compatible with the
1.0 OpenFlow protocol) and virtual networks (Mininet - Open
vSwitch based), enabling the user to test failure detection and
localization in a more complex manner even if the number of
physical devices is limited. We note that the scalability of the
implementation can be maintained by defining subdomains on
the topology and localizing in a parallel manner. The main
lesson we have learned during the deployment is that message
delay in real networks fluctuates thus to avoid false failure
alarms when reducing the failure localization time we need
to implement a mechanism that adjust the delay thresholds
continuously.
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