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Abstract—We present a new set of solutions for topology
verification and failure localization in Software Defined Networks
(SDNs). Our solutions are targeted towards offloading the control
plane as much as possible and bringing more resilience against
congestion or partitioning in the control plane. The core idea
is to define control flows for network diagnosis and utilize a
fraction of the forwarding table rules on the switches to serve
these control flows. For topology verification, we present provably
optimal or order-optimal solutions in total number of static
forwarding rules and control messages. For single link failure
localization, we present a solution that requires at least 3|E| but
at most 6|E| forwarding rules using at most 1+ log2 |E| control
messages, where |E| denotes the number of bidirectional links
in the forwarding plane. We analyze the latency vs. rule and
control message optimality trade-offs showing that sub-second
failure localization is possible even in data center scale networks
without significant additional overhead in the number of static
rules and control messages. We further simulate the performance
of failure localization in identifying multiple link failures.

Index Terms—Software Defined Networks, OpenFlow, Network
Diagnosis, Failure Localization.

I. INTRODUCTION

SDNs promise to change the landscape of communication
networks by extracting the control functions and applications
distributed over the individual forwarding elements and plac-
ing them on top of logically centralized network controllers.
In this view, the forwarding elements are simplified and their
internal pipelines are exposed to the external controllers as
programmable abstractions. For instance, if the forwarding
elements are OpenFlow switches, then the internal pipeline is a
series of flow tables, where the external controllers can dictate
which packets are processed by which tables in what order
by specifying match-action sequences based on the packet
headers ultimately specifying the outgoing port for the packet
in the last table it is processed. When a packet cannot be
matched at an OpenFlow switch, a default action is applied
such as drop packet or send to controller. It is controller’s
responsibility to collect the network state and install flow
forwarding and processing rules.

For high network availability and performance, it is es-
sential for a controller to be able to verify the forwarding
plane topology and identify link failures at forwarding plane
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speeds. In pure SDN architectures such as the ones based on
OpenFlow, controllers can be notified about various network
events by the switches such as new flow events, per flow or per
port packet counters, interface up/down events, master/slave
configurations, new or expired forwarding table rules, etc.
However, switches do not support any protocols for neighbor-
hood discovery, topology discovery, bidirectional forwarding
detection (BFD) [1], or other solutions that require control
signaling between the switches. Thus, for network diagnosis
in the form of verifying topological connectivity, detecting
network partitions, locating link failures, etc., controllers must
define specific control flows and install the corresponding
forwarding rules onto the switches. To this end, many
modern controller frameworks take advantage of the existing
control plane protocols such as Link Layer Discovery Protocol
(LLDP) [2]. By sending LLDP packets to network switches
and installing static forwarding rules to handle them properly,
network controllers discover and diagnose the topology of the
forwarding plane.

However, LLDP based approach suffers from excessive
number of messages that must be handled by the software
agents (i.e., slow-path handling) on network switches that can
be substantially slower (e.g., by 1000×) than the forwarding
speed supported by hardware rules (i.e., fast-path handling).
Frequently performing topology discovery would result in
control plane congestion. Thus, continuous monitoring via
LLDP is not a feasible approach in a relatively well-connected
network. Furthermore, LLDP based topology discovery and
diagnosis fail to work under control plane failures/partitions
that disrupt the communication among the controllers as well
as the communication between the individual switches and
controllers.

Our paper focuses on finding efficient solutions for topology
verification and failure localization in OpenFlow networks that
are fast and also tolerant against control plane partitions. To
achieve higher speeds and partition tolerance in the control
plane, one must offload most of the control plane processing
onto the forwarding plane in the form of hardware-based
forwarding rules installed on the forwarding elements. These
static forwarding rules combined with dynamic forwarding
rules allow each controller to inject control packets into
the forwarding plane such that the packets traverse all or a
subset of network links before coming back to the controller.
Inspecting which of its control packets are looped back from
the forwarding plane and which are not, the controller can
identify the forwarding plane problems. Since the control flows
must be statically installed and the total number of hardware
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forwarding rules supported by a switch can be quite limited,
realizing network diagnosis using minimum number of static
forwarding rules becomes the most critical objective.

Our main contributions can be listed as follows:
(i) We show that topology verification can be done optimally

in terms of using minimum number of static forwarding rules
and control messages. With a counter example, we also show
that minimizing the total number of static forwarding rules is
not equivalent to finding the shortest walk that visit every link
in the forwarding plane at least once.

(ii) For topology verification problem, we present a solution
based on shortest possible walk that visits every link in the
forwarding plane at least once. The solution iterates over
an initially computed shortest walk to reduce the number
of forwarding rules while preserving the walk length using
a greedy heuristic. We can show that the total number of
forwarding rules required by our solution is upper bounded
by 2|E|. It is also delay optimal when only one control
message is used. For special topology cases or failure scenarios
(referred to as asymmetric failures later in the paper), the
proposed solution also becomes provably optimal in number of
static forwarding rules. Simulations over real world topologies
indicate that the overhead remains within 14% of the optimum
and matches the optimum for 60% of the topologies.

(iii) We present order optimal solutions (in number of
forwarding rules and control messages) to locate an arbitrary
single link failure. With a counter example, we show that
locating multiple arbitrary link failures over arbitrary network
topologies is not solvable.

(iv) We present how one can trade off the number of
control messages and/or static forwarding rules to speed up
failure localization in data-center scale networks. Even when
the number of links is in the order of 100K, our analysis
indicate that by slightly using more bandwidth and rules,
failure localization can be done at sub-second latencies.

(v) As our solution can probabilistically locate multiple
failed links, we evaluate the performance of multiple link fail-
ure detection over real world topologies. Our results indicate
that even when only one switch is accessible by a controller,
that controller can detect more than two failures on average
over the majority of the topologies.

The paper is organized as follows. In Section II, we sum-
marize the related works. In Section III, we describe the
system model. In Section IV, we focus on verification of
topology connectivity and establish optimality results as well
as performance bounds. In Section V, we turn our attention to
locating a single but arbitrary link failure. We provide an order
optimal solution and present performance bounds on important
metrics. In Section VI, we extend the results to multiple link
failures. In Section VII, we show performance results using
publicly available, real world topologies. In Section VIII, we
discuss several variations from the original problem set up.
Finally, we conclude in Section IX.

II. RELATED WORK

There are several works both for classical networks and
SDNs that are closely related to ours. In all-optical networks,

fault diagnosis (or failure detection) is done by using moni-
toring trails (m-trails) [3]–[8]. An m-trail is a pre-configured
optical path. Supervisory optical signals are launched at the
starting node of an m-trail and a monitor is attached to the
ending node. When the monitor fails to receive the supervisory
signal, it detects that some link(s) along the trail has failed.
The objective is then to design a set of m-trails with minimum
cost such that all link failures up to a certain level can be
uniquely identified at some pre-determined nodes or by all
nodes in the forwarding plane. Once the failure is localized,
it can be reported to an external controller or even a fast
path failover/rerouting can be done as a function of the
optical transport without requiring any action by an external
controller. The fundamental difference in OpenFlow-based
SDN architectures is that switches do not have any control
signaling between them. Therefore, controllers should serve
as the start and end points of the monitoring signals.

The more salient differences from the optical networks can
be listed as: (i) In all-optical networks, the main resources
are wavelengths (i.e., bandwidth) allocated for monitoring.
In our set up, the resources are the control packets and the
forwarding rules. (ii) In our problem, a given static forwarding
rule can be (and are in fact) reused by different walks. This
creates an interesting situation where shortest walks do not
always lead to the minimum number of forwarding rules. (iii)
In optical networks, the monitoring is performed in a non-
adaptive fashion, e.g., the monitoring trails are fixed and the
control signals should be continuously sent over all the trails.
In contrast, SDNs enable adaptive group testing, where each
group test can depend on the results of the previous tests.
Moreover, signals are initiated by the network controllers as
event based signals (e.g., if a controller observes poor state
synchronization or partition, it injects the control packets).
These differences also holds for works on graph-constrained
group testing [9].

In various SDN solutions, LLDP-based topology discovery
is used to periodically monitor the changes in the network
topology [2]. LLDP has specific field values: EtherType field
set to 0x88cc, destination MAC address is set to a designated
multicast address1. In OpenFlow networks, network controllers
send LLDP packets encapsulating them in packet-out messages
over the transport layer control sessions maintained with
individual switches to flood all the links in the network.
Controller has two main options to perform flooding: (1)
Send one packet-out message for each link of a given switch,
which requires sending 2|E| packet-out messages for the
whole network. (2) Send one packet-out message for each
switch instructing the switch to multicast the encapsulated
LLDP packet on all ports, which requires sending |S| packet-
out messages for the whole network. When the next hop
switch receives LLDP packets from its neighboring switches,
it must either have a specific rule for LLDP packets so that
it is forwarded to the controller or there should not be any
forwarding rules matched to LLDP packets and the default
action for unmatched flows must then be send to controller.
In both cases, the next hop switch forwards the LLDP packet

101:80:c2:00:00:0e, 01:80:c2:00:00:03, or 01:80:c2:00:00:00
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Fig. 1: System Model

as packet-in message over the control session established with
the controller. Hence, 2|E| packet-in messages are generated
in total. Note that the default rule send to controller is not a
preferred option for carrier-grade networks as it can be used
to launch denial of service attacks. In general, the default
rule for handling unmatched flows is to drop the packets of
these flows. Therefore, controllers must put 1 static rule per
switch to handle LLDP packets incoming from other switches
by matching on EtherType and/or destination MAC address.
Overall complexity of LLDP based approach then requires
|S| static rules and at least |S| + 2|E| control messages are
sent to/from controllers in the form of packet-in and packet-
out messages. Processing speed of these control messages
can be as much as three orders of magnitude slower than
the forwarding speed between the switches using hardware
rules. As a result LLDP based topology discovery cannot be
done too frequently, or otherwise it congests the control plane.
Another major disadvantage of this approach is that it is highly
intolerant to partitions in the control plane, e.g., in its simplest
form if a controller looses its control session with any switch
or another controller, the process fails. Our solutions set forth
do not suffer from these issues at the expense of using more
static rules than the LLDP approach.

SDN era has also generated many recent works on network
debugging, fault diagnosis and detection, policy verification,
dynamic and static state analysis [10]–[14]. As far as we are
aware of, all these works are complementary to our work in
terms of the problem spaces they specifically target. In [11],
for instance, authors piggyback on existing rules installed for
data flows to identify which header space can locate link fail-
ures given these rules. The obvious drawback of such solutions
is that the currently installed forwarding rules for data flows
might not be sufficient for diagnosing the forwarding plane
(e.g., in the extreme if there are no data traffic, there may be
no forwarding rules installed!). Furthermore, the controllers
should be able to reach any switch (i.e., all control interfaces
are operational) and be able to inject data packets mimicking
the end hosts. Installing static forwarding rules to be used
for later forwarding plane diagnosis via control flows and
optimizing the associated costs are the main features we have
that are also absent in prior art on SDNs.

III. SYSTEM MODEL

A. Network Architecture

The main features of the network architecture are captured
in Fig. 1. Our system model follows the OpenFlow model
[15]. Network consists of a forwarding plane and a control
plane. The forwarding plane consists of forwarding elements
(will use the term switch interchangeably), each supporting
a finite number of {match, action} rules. A match pattern
is defined using incoming port ID and packet headers using
ternary values 0, 1, or * (i.e., don’t care). In essence, each
match pattern defines a network flow. The following actions
on a particular flow match are allowed: forward to outgoing
port ID, drop packet, pop outer header field, push outer header
field, overwrite header field. Regardless of match length and
number of actions taken per matching (e.g., switch can first
rewrite a particular field in the packet header, then push an
MPLS label, and finally forward to a particular interface),
we will count the cost of each flow matching rule as one
forwarding rule. The forwarding plane in Fig. 1 has seven
switches (s1 through s7) and nine interfaces/links between
them. The set of switches is denoted by S. We assume that
each link is bidirectional, i.e., a switch can both receive and
send over the same link. The model is applicable to cases
where multiple interfaces exist between the same pair of
switches, there are logical interfaces (e.g., a preconfigured
tunnel with a tunnel ID configured on both ends), or pairs of
directional links in opposite directions interconnect the same
pair of switches.

The control plane consists of one or more controllers.
In OpenFlow, a switch can be programmed (i.e., forward-
ing rules are installed) by multiple controllers by assigning
these controller equal roles. A common deployment scenario
however allows each switch to be programmed only by
one controller (called master controller). Controllers typically
install forwarding rules on multiple switches using control
interfaces (depicted by red dotted lines in the figure). The
control interfaces can be in-band (i.e., the forwarding plane is
used for inter-controller and controller-switch communication)
or out-of-band (i.e., a separate physical network interconnects
controllers with each other and switches) or hybrid of both.
The subset of switches that a controller Ci can send packets to
and install rules on forms its control domain Di ⊆ S. The rest
of the switches constitutes its complementary domain Di =
S \Di. For C3, D3 = {s4, s7} and D3 = {s1, s2, s3, s5, s6},
i.e., C3 can send control packets to and install forwarding rules
on s4 and s7. To install a rule on a switch in its D3 (e.g., s1),
C3 must send its request to any controller (e.g., C1) which
includes that switch in its control domain.

We assume that the core functions such as topology discov-
ery, inter-controller communications, master/slave selection,
routing, etc., are supported as part of the controller framework
and they are implementation specific. As a pre-requisite, we
assume that the controllers know the network topology as it
is used by at least the routing applications. LLDP can be
used infrequently as part of the planned topology updates or
network reboots. In some cases, the controllers can extract
topology information directly from a database updated manu-
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ally or using a network planning tool.
In OpenFlow model, switches monitor the interface up/down

events for their local ports and report status changes to the
controllers over their control interfaces. Although it is not part
of the OpenFlow specification, suppose each switch monitors
the health of their local links by exchanging periodic heartbeat
messages with their neighboring switches. Even in that case, a
controller cannot receive direct notification from the switches
outside its D. E.g., C3 would be unaware of a link failure
between s2 and s3. One way of receiving failure notification
is via other controllers. E.g., both C1 and C2 can receive
failure notification for link between s2 and s3. Then, they
can notify C3. Note that this series of events are dependent on
the assumption that switches locate their local link failures via
heartbeat messages. As already stated, this is not supported by
current OpenFlow switches. Even if a future OpenFlow switch
specification indeed makes this a standard functionality, the
failure reporting itself might fail due to problems in the control
plane. For instance the communication path between pairs
of controllers might be slow, congested, or disrupted (e.g.,
configuration mistakes, controller overload, software/hardware
failures on the control plane, DOS attacks). Thus, in the
absence of switch support on locating local link failures or
proper reporting, the only other viable option is to install static
forwarding rules onto the forwarding plane for global network
monitoring.

Once these static forwarding rules are in place, a controller
can learn about the topology failures within its D by sending
control messages from its D into its D and listen to the
responses. These messages constitute control flows. Since
the controller cannot install new rules in D, a priori static
forwarding rules must be installed on switches in D for the
control flows. Finding these static rules given the forwarding
plane topology for optimal network diagnosis is the focus of
this paper. Once the forwarding plane topology is learned and
consistently shared across the controllers, any controller can
compute these static rules, distribute to other controllers, and
each controller installs them in their current D. When the static
rules are placed into the switch forwarding tables, controllers
can start using them for network diagnosis.

Our system model does not assume that D and D are
fixed or known a priori. C3 for instance might have had
functional control interfaces to other switches in D3, but they
may have been lost. A priori C3 does not have any clue on
which control interfaces would be failed. In another case, there
might be a dynamic partitioning of the forwarding plane such
that a controller becomes in charge of different forwarding
elements over time based on some optimization logic. Not
assuming fixed D and D may be useful even when they
are actually fixed. If multiple controllers coexist each with a
different D and D, instead of setting static rules with respect
to each controller, it would be more efficient (i.e., requires
less forwarding rules for control flows) to set up static rules
independent of what D and D are actually.

Note that a controller can dynamically install new forward-
ing rules on its D for control flows. As it will be clear in the
later sections, we will make use of this advantage to loopback
the control packets to the original controller.

B. Failure Scenarios

We will differentiate between two different failure scenarios:
(i) Symmetric failures, where a bidirectional link is either func-
tional in both directions or non-functional in either direction.
(ii) Asymmetric failures, where a bidirectional link can fail in
one direction but not necessarily in the other direction.

For symmetric failures, it suffices to visit an interface in
any direction to check its health. Thus, if symmetric failures
are the most common scenarios, then one can specifically plan
network diagnosis for such more probable incidents and save
costs. We will model the forwarding plane as an undirected
graph Gu(S,E) in this case. Here, S is the set of vertices,
where there is a 1-1 mapping from the forwarding elements
to the vertices in S and E is the set of edges, where there is
1-1 mapping from the bidirectional links to the edges in E.

For asymmetric failures, both directions of the link must
be examined. The problem is more constrained and imposes
higher diagnosis costs. However, as we will see later in the
paper, shortest walks become optimal in the number of
forwarding rules. We will model the forwarding plane as a
directed graph Gd(S, E⃗) in this case. Here, E⃗ is the set of
arcs, where there is 1-1 mapping from each direction of the
links to the arcs in E⃗. Note that we use the terms directed edge
and arc interchangeably throughout the paper. We denote the
directed edge from vertex i to vertex j in S by eij ∈ E⃗.

C. Problem Statement and Cost Metrics

Given the forwarding plane topology and without any
information on D, we would like to compute and install
static forwarding rules such that as long as controller Ci is
master of at least one switch (i.e., |Di| ≥ 1) it can run
network diagnostics. We investigate two related but distinct
problems for network diagnosis: (1) verification of topology
connectivity and (2) localization of link failures. Observe that
solving failure localization problem can also serve as topology
verification, but not vice versa.

Static forwarding rules can be interpreted as one or more
walks on the undirected (Gu(S,E)) or directed (Gd(S, E⃗))
topology graph of the forwarding plane. Each walk in essence
a sequence of consecutively visited directed edges in the
form [eij , ejm, eml, . . . , epz, ezr], where the tail of the current
directed edge is the head of the next directed edge. We also
use the form si → sj → sm → . . . → sp → sz → sr to
denote the same walk. Without loss of generality, we only
consider closed walks (i.e., walk starts and ends at the same
vertex) since such walks are the only ones that can satisfy
the constraint |D| ≥ 1. Let Ω represent the set of all closed
walks on Gu (or Gd). Suppose we picked the subset of walks
Ωj = {Wj1, . . . ,WjK} ⊆ Ω to diagnose the forwarding
plane. Then, we can measure the cost of Ωj as follows.

1) Number of control messages: Each walk is traversed by
a different control packet as otherwise we cannot differentiate
among the walks. Thus, the overhead in terms of the number
of control messages is equal to the number of walks we picked
(i.e., K).
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2) Latency: Each control packet k traverses the walk Wjk

and thus experiences a latency of Lk(τs + τp) + 2τc. Here,
Lk is the length of walk Wjk in hops, τs is the switching
delay for a control packet in the forwarding plane, τp is
the average propagation delay between the switches along
the walk, and τc is the delay between the controller and
switch. Depending on whether the walks can be executed in
parallel or not, the overall latency figure would vary. If walks
can be done in parallel, then the total latency is given by
(τs+τp)maxk Lk+(K+1)τc. If walks must be done sequen-
tially, then the total latency becomes (

∑
k Lk)(τs+τp)+2Kτc.

Any hybrid solution (i.e., walks are grouped together, within
a group they are executed in parallel while across groups they
are executed in sequence) would have a latency between these
two extremes.

3) Number of static rules: Let E⃗(Wjk) represent the set
of directed edges traversed by Wjk. If a directed edge is
traversed multiple times within the same walk or across walks,
it can share the same forwarding rule at the head of directed
edge (i.e., sending switch). The easiest way of proving this is
to let controllers use source based routing. In this brute-force
approach, each arc is assigned a unique label. The whole route
is specified in the packet header by concatenating the labels
of the links in the order they are visited. Each switch has a
matching rule for the label and the action consists of popping
the outermost label and forwarding. However, for data-center
scale topologies, this would create very large control packets.
A better way is to let switches do the packet labeling/tagging
where necessary. Large control packets can be avoided by
pushing and popping labels on the forwarding plane rather
than stacking per hop labels at the source. Each duplicated
sequence of arcs on a walk are treated as a single tunnel or
trunk. Labels are pushed before the tunnel and popped at the
end of the tunnels (see Section IV-D for details). For each
unique arc (i.e., directional edge) in any Wjk, there must be
a distinct forwarding rule as without such a rule traversing the
corresponding link in the specific direction is not possible. Ac-
cordingly, we can express the total number of static forwarding
rules as |

∪
k E⃗(Wjk)|, i.e., the cardinality of union of arc sets

belonging to distinct walks used for diagnosis. Thus, in SDNs
minimization of |

∪
k E⃗(Wjk)| becomes the relevant resource

optimization criterion as opposed to
∑

k Lk used in optical
networks.

For an arbitrary topology, it is not possible to optimize each
of these cost metrics simultaneously. In the rest of the paper,
our focus will be mainly on minimizing the total number of
static forwarding rules. We will also quantify the costs in terms
of latency and number of control messages. As it will be clear,
our solutions will be optimal for both the static forwarding
rules and the number of control messages simultaneously for
several network topologies.

IV. VERIFYING TOPOLOGY CONNECTIVITY

Topology verification amounts to finding a set of walks that
collectively visit every edge in Gu or arc in Gd at least once.
We set our main objective as the minimization of the total
number of forwarding rules. Then, a natural choice for solving

this problem is to pick a single closed walk Wopt that has
the shortest length across all walks that visit each edge in
Gu or arc in Gd at least once. In general there are multiple
shortest walks that can be picked as Wopt. In the following
sections we will establish that (i) it is not necessarily true that
any of these candidate Wopt’s is the optimum solution for
the number of forwarding rules, (ii) not all shortest paths are
equivalent in terms of the objective, (iii) one can always find
a single walk that achieves the objective in polynomial time.
We also present a heuristic algorithm that tries to pick the best
walk within the class of shortest walks. Our evaluations over
real topologies indicate that this heuristic solution is within
14% of the optimum solution.

A. Symmetric Failure Scenarios

Finding the shortest length across all closed walks that visit
each edge in Gu or arc in Gd at least once is known as
Chinese Postman Problem. Thus, as a starting point, we pick
Wopt as any solution of Chinese Postman Problem.

For undirected connected graphs such as Gu(S,E), Wopt

can be computed in polynomial time [16]. A trivial lower
bound on the number of forwarding rules is |E| since we need
to forward the control packet for topology verification onto
each link at least once and without a rule such forwarding
action would not occur. Then, if there is a cycle in Gu that
visits every edge in E exactly once (i.e., an Euler Cycle exists),
we can state that Ω∗ = {Wopt} is the optimum solution for
topology verification. Ω∗ minimizes both the total number of
static forwarding rules and the total number of control mes-
sages. Specifically, Ω∗ requires |E| static rules and one control
message. The latency of Ω∗ becomes |E|(τs + τp) + 2τc.
A well-known necessary and sufficient condition for existence
of an Euler cycle in a connected undirected graph is to have
every vertex to have even number of edges.

Unfortunately, not all forwarding topologies have Euler
cycles. E.g., the forwarding plane in Fig. 1 has no Euler
cycle. Remember that when we want to optimize the number
of static rules, it is not the length of Wopt (denoted as
Lopt), but the cardinality of E⃗(Wopt) that must be minimized.
Denote the total number of duplicate arcs for a given walk
W as κ(W). Then, we can express the total number of
static rules by Wopt as (Lopt − κ(Wopt)). After stating
the next lemma, we can at least claim that Ω∗ has a worst
case competitiveness ratio of two in number of forwarding
rules, i.e., |E| ≤ (Lopt − κ(Wopt)) ≤ 2|E|. The solution
is obviously optimum in number of control messages. The
latency can be written as Tk = Lopt(τs + τp) + 2τc.

Lemma 4.1: In Wopt, no edge is traversed more than twice.
In other words: Lopt ≤ 2|E|.

Proof: Suppose an edge is traversed more than twice.
Then, we can construct an undirected (multi)graph Gu(S

′,E′)
from Gu(S,E) such that S = S′ and E ⊂ E′ with each
occurrence of an edge in Wopt has a 1-1 mapping to E′.
Note that although Wopt may not necessarily be an Euler
cycle on Gu(S,E), it is always an Euler cycle on Gu(S

′,E′)
by construction. Hence, every vertex in Gu(S

′,E′) must have
an even degree as this is a necessary and sufficient condition
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for connected graphs [16]. However, if there are more than
two edges between two vertices as in this case (meaning that
the corresponding edge in Gu(S,E) is traversed more than
twice), one can remove two edges at a time between these
vertices until there remains one or two edges between the
same vertices. Since we started with vertices that have even
degrees, removing an even number of edges would preserve
the same property. In other words, an Euler path exists after
these edge deletions in Gu(S

′,E′) such that it is strictly
shorter than Wopt and visited every edge in Gu(S,E) at least
once. Hence, Wopt cannot be the shortest cycle for topology
verification, which is a contradiction.

We can express a tighter lower bound for the number of
static rules than |E| by counting bridge links.

Definition An edge (if omitted) that partitions an undirected
graph into two disconnected sub-graphs is called a bridge.

When a walk on a graph starts on one side of a bridge,
if it crosses the bridge in one direction, it has to cross the
same bridge in the reverse direction to come back to the
starting point. Using this trivial observation, one can state the
following lower bound on total number of forwarding rules.

Lemma 4.2 (Lower Bound): Topology verification needs at
least |E|+ |B| forwarding rules, where B is the set of bridges.

Proof: For topology verification, each edge on Gu must
be traversed in at least one direction. Moreover, each bridge
must be crossed in both directions as otherwise we cannot loop
back to the starting point. Thus, there are at least |E| + |B|
unique arcs that must be visited. Each uniquely visited arc
requires at least one forwarding rule at the head node. Thus,
we need at least |E|+ |B| forwarding rules.

All the edges in tree, star, and linear topologies are bridges
rendering the lower bound 2|E|. Hence, Ω∗ is indeed the op-
timum solution in number of static rules over such topologies.

Note that the lower bound given by Lemma 4.2 may not be
achievable by Wopt in general. Though, it can be achievable
by a longer walk. An example is depicted in Figure 2. The
forwarding plane topology represented by the leftmost graph
has no bridges and has |E| = 8. Lemma 4.2 indicates
that we need at least 8 forwarding rules. Solving Chinese
Postman Problem however leads to an optimal walk Wopt

with Lopt = 10. The corresponding logical ring is shown at
the center of Figure 2. The walk traverses the arc e41 twice,
leading to κ = 1. Hence, Wopt requires (Lopt−κ) = 9 static
forwarding rules. This is strictly larger than the lower bound.
The difference is due to the edge between s2 and s3 as it must
be traversed in both directions requiring installation of one rule
at s2 and one rule at s3. Other candidate solutions for Wopt

suffer from a similar non-bridge link reversal. This situation
is avoided over the logical ring constructed by a longer walk
as shown by the rightmost ring topology in the figure. Instead
of moving directly from s3 to s2 (as in the optimal walk),
a longer path s3 − s4 − s1 − s2 is taken. As a result, the
ring has 12 hops with κ = 4 (e12, e34, e41 occur two, two,
and three times, respectively). Thus, this longer walk requires
(L− κ) = 8 static rules achieving the lower bound. Next, we
formalize the achievability result.

Theorem 4.3 (Achievability of Lower Bound): Lower bound
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Fig. 2: Example of a topology, where Wopt cannot achieve
the lower bound in Lemma 4.2, but a longer walk achieves it.
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Fig. 3: Algorithm 1 in action.

in Lemma 4.2 is achievable.
Proof: We start the proof by first removing all the bridges

from Gu, which will generate |B|+1 disconnected subgraphs
Gi (i = 0, . . . , |B|). Let Si and Ei represent the vertex set and
edge set of Gi. Robbins Theorem [17] states that any two-
connected undirected graph can be strongly oriented. Since
all Gi’s are two-connected undirected graphs, we can pick
any one direction of an edge in Gi and generate a directed
graph Gd

i such that we can find a directed path between any
two vertices of Gd

i . Next, starting from any vertex on Gd
i

we can construct a closed walk Wi that visits every arc on
Gd

i at least once. The same closed walk visits every edge
in Ei at least once and always in the same direction, i.e.,
L(Wi)−κ(Wi) = |Ei|. Therefore, each walk requires exactly
Ei forwarding rules.

In the final part, we need to stitch each Wi’s together to form
a larger closed walk that also visits all the bridges in Gu. This
can be done easily as i-th bridge connects the cycle Wi−1 to
Wi. Thus, we can start the walk W0, moving to W1 on the
first bridge, to W2 on the second bridge, and so on up to walk
W|B|. Then, crossing each bridge in the reverse direction after
completing each walk Wk, we move back to Wk−1, to Wk−2,
and so on until we arrive at W0 and complete it. This combined
walk ends up traversing each non-bridge edge only in one
direction and each bridge edge in both directions. Therefore,
it requires exactly |E|+ |B| forwarding rules.

Although optimality in number of static rules and number
of control messages can be achieved by a longer walk, we may
pay a substantial penalty in delay for large topologies as the
walk might be much longer. Thus, it would be more desirable
to pay a small penalty in number of static rules and do not in-
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Algorithm 1 Heuristic for reducing (Lopt − κ(Wopt))

Step 1: Find a solution Wopt to Chinese Postman Problem.
Let vk denote the absolute position of each hop on Wopt

and f(vk) is the actual switch at that position.
Step 2: Construct set Λ such that a pair of arcs {eij , eji} ∈
Λ iff both eij , eji appear in Wopt and the corresponding
edge between si and sj in Gu is not a bridge.
while Λ ̸= ∅ do

Step 3: Remove the pair of arcs {eij , eji} from Λ that are
closest to each other on Wopt. Without this pair, Wopt

divides into two parts. Denote the part that keeps si as
W1 and the part that keeps sj as W2.
Step 4: Construct set Γ such that {vk, vl} ∈ Γ iff f(vk) =
f(vl), vk is on W1 and vl is on W2.
while Γ ̸= ∅ do

Step 5: Remove a pair {vk, vl} from Γ.
Step 6: Denote the cycle that starts from vk on W1 and
ends at vl on W2 as W3. Denote the cycle that starts
from vl on W2 and ends at vk on W1 as W4. Construct
a new walk W′

opt by stitching W3 to the reverse of
walk W4 (or equivalently stitching the reverse walk of
W3 to W4).
if κ(W′

opt) > κ(Wopt) then
Step 7: Wopt := W′

opt and break.
end if

end while
Step 8: Remove any pair {eij , eji} from Λ if either of its
arcs is not on Wopt.

end while

cur additional delays by sticking with Wopt. In general, there
is more than one solution to Chinese Postman Problem (CPP).
Then, we should search for a solution of CPP that achieves
the minimum (Lopt − κ(Wopt)) (or equivalently maximum
κ(Wopt)) to attain lower forwarding rule costs. Algorithm 1
provides a simple transformation on top of an initial Wopt that
iterates over the non-bridge links that have both of their arcs
in E⃗(Wopt). An example of these iterative transformations is
shown in Fig. 3 based on the forwarding plane topology given
in Fig. 1. In Step 1, initial solution of CPP returns a walk of
length 11 with κ = 0. In Step 2 of the algorithm, we have
Λ = {{e25, e52}, {e36, e63}}. In Step 3 and Step 4, we inspect
the pair {e25, e52} and construct Γ = {{v1, v9}}, respectively.
In Step 6, W3 = s5 → s1 → s2 → s5 is reversed and the rest
of the walk remains the same. The top-right ring in clockwise
direction depicts newly constructed walk of same length as
before but κ = 1. Hence, it requires one less forwarding rules
than the initial walk. Next iteration starts with this new walk
(bottom-left ring in the figure). There is only one candidate
pair {e36, e63} to consider with Γ = {{v4, v8}}. By reversing
the part of the ring s6 → s3 → s4 → s7 → s6 in Step 6, we
obtain a new walk (bottom-right ring) with κ = 2. Algorithm
terminates at this stage. The newly constructed walk is still a
solution of CPP. Moreover it requires (Lopt − κ(Wopt)) = 9
static rules. Since |E| = 9 in Gu, this is an optimum walk
in number of static forwarding rules. Our evaluations over

real topologies (see Section VII) indicate that Algorithm 1 is
optimum in number of static rules for 60% of the topologies,
and for the rest it stays within 14% of the optimum.

The complexity of Algorithm 1 is O(|E|) if an Euler cycle
exists, otherwise O(|V |3) steps needed to solve CPP. Finally,
O(2|E|) new rules should be installed in the network. The
delay of pushing these rules would be dominant in practice
rather than the computation latency of the rules. In the event
that the network topology is updated (e.g., due to maintenance
or upgrades), in the worst case we have to recompute the
Algorithm 1 and update all the rules. If the topology changes
are constrained, we do not have to re-compute the whole walk,
but the walk can be incrementally updated.

B. Special Case: Fat-Tree Topology

Fat-tree topology [18] is a popular choice in data centers. A
k-ary fat-tree topology is organized as k pods, each comprised
of two layers of k/2 switches. Each switch has k ports. The
switch in the lowest layer in the pod is connected to k/2
hosts and the remaining k/2 ports are each connected to a
distinct switch in the upper layer in the pod. On top of the
pods, there are (k/2)2 k-port core switches, each connected
to exactly one switch in each pod and each switch in the
upper layer in the pod is connected to exactly k/2 core switch.
Therefore, including the end hosts, each switch has k links.
Clearly, k must be an even number to render k/2 an integer.
The architecture supports k3/4 end hosts connected to each
switch over a single link. Overall, a k-ary fat-tree topology
has 3k3/4 edges of which k3/4 are bridges and k is an even
number. Thus, the lower bound on forwarding rules becomes
|E|+ |B| = 3k3/4 + k3/4 = k3.

When k/2 is even, this lower bound is achieved. For the
proof, it suffices to augment the original topology graph into
another one that has an Euler cycle. Note that, in fat-tree
topology, only the end hosts have odd number of links and
all the switches have even number of edges. When k/2 is
itself even, we can add an extra edge between each host and
the switch it is already connected to. This newly constructed
topology graph has exactly k3 edges with all switches having
an even degree. Therefore, it has an Euler cycle of length
k3 = |E| + |B|, which can be computed in O(|E| + |B|)
steps. Thus, Wopt becomes an Euler cycle of this augmented
topology and achieves the lower bound in Lemma 4.2. Many
data-center grade switches have ports in multiples of four and
for all practical purposes, to constrain k/2 to be an even
number is not a major obstacle.

If k/2 is not even, we can augment the graph into another
graph with Euler cycle as follows:. We add an additional edge
to k/2−1 hosts from each switch at the bottom layer. The re-
maining hosts with odd number of edges are paired together to
minimize the total length of the shortest paths interconnecting
the pairs. Each shortest path is of length 4 if paired hosts are in
the same pod or of length 6 if they are in different pods. Extra
edges are added along these shortest paths. The resulting graph
has all even-degree nodes and hence it has an Euler cycle. The
total number of edges in the resulting graph can be computed
as 3k3/4 + (k/2− 1)(k2/2) + (k − 2)k + 3k, where the first
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terms is the number of edges in fat-tree topology, the second
term is the number of edges added for even number of hosts
under the same switch, the third term is the number of edges
added for hosts paired under the same pod, and the fourth
term is the number of edges added for paired hosts between
different pods. The total number of edges in the resulting graph
becomes k3+k2/2+k rendering Lopt ≤ k3+k2/2+k. In other
words, the number of static forwarding rules are at most within
a factor of (1+ 1

2k +
1
k2 ) of the optimum in Theorem 4.3. For

3-port, 5-port, 7-port, 23-port switches, the overhead is within
28%, 14%, 9.2%, 2.4% of the minimum number of rules. As
data centers employ even denser port counts per switch, we
can claim near-optimality in number of static forwarding rules
for fat-tree topologies.

C. Asymmetric Failure Scenarios

To verify topology against asymmetric failures, one or more
control packets must visit each link in both directions. Since
there are exactly 2|E| arcs to be visited and each arc must have
a distinct forwarding rule, the number of static forwarding
rules is ≥ 2|E|. Due to our bi-directional link assumption on
Gd(V, E⃗), every vertex has equal in-degree (i.e., the number
of incoming arcs) and out-degree (i.e., the number of outgoing
arcs). In connected graphs, this is a sufficient condition for
the existence of an Euler cycle [16]. An Euler cycle can be
found in Θ(2|E|) steps over Gd. As Euler cycles visit every
arc in a directed graph exactly once, Ω∗ = {Wopt} is the
optimum solution both in terms of static forwarding rules
and control messages. The latency of this solution, however,
becomes 2|E|(τs + τp) + 2τc.

D. Mapping the Walk to Static Forwarding Rules

Once a walk W is determined, we need to install forwarding
rules at switch si for each arc eij in E⃗(W ). The walk and the
set of corresponding forwarding rules must uniquely define a
control flow for topology connectivity. For this purpose, one
of the packet headers is used to identify that this packet is used
to verify topology connectivity. Suppose source IP address
field is used to this end and a unique local IP address IPA is
assigned. Then, all static forwarding rules for W must match
source IP address to IPA. Table I shows how the closed walk
s1 → s5 → s2 → s3 → s6 → s7 → s4 → s3 → s6 → s5 →
s2 → s1 is realized using 9 forwarding rules. Let us use this
walk example below to describe the basic steps to convert a
walk to a set of static forwarding rules. Note that there are
many other alternatives to define matching rules and actions
to realize the same walk.

If a switch si is visited only once by W , the static rule
does not need to match any other packet field than the one
that identifies the control packet. In our example, s1, s4, and
s7 are visited only once and these switches only need to match
source IP address against IPA to take the correct forwarding
action. If a switch si is visited multiple times but always
forwards to the same link, then again the static rule does not
need to match any other packet field. E.g., s3 and s5 occurs
twice in the example walk yet their forwarding action is the
same: s3 forwards to s6 and s5 forwards to s2. If a switch

TABLE I: Sample Forwarding Rules

SW Matching Rules Actions

s1 src IP == IPA
set VLAN to vlan1

forward to e15
s2 src IP == IPA ∧ VLAN == vlan1 forward to e23
s2 src IP == IPA ∧ VLAN == vlan2 forward to e21
s3 src IP == IPA forward to e36

s4 src IP == IPA
set VLAN to vlan2

forward to e43
s5 src IP == IPA forward to e52
s6 src IP == IPA ∧ VLAN == vlan1 forward to e67
s6 src IP == IPA ∧ VLAN == vlan2 forward to e65
s7 src IP == IPA forward to e74

si is visited multiple times and forwards to different links at
some of these visits, it requires a separate forwarding rule for
each of these links. In many occasions outgoing link has a
one-to-one mapping to the incoming switch port and thus a
forwarding rule that matches incoming switch port in addition
to the source IP address is sufficient to identify the outgoing
link. When incoming switch port is not sufficient, an additional
header field must be used to identify the outgoing link. One
can use VLAN tagging or MPLS labeling or a custom header
field using an extension to OpenFlow protocol. Suppose we
use VLAN tags as it is a standard feature in most switches
including OpenFlow. Then, we assign a unique VLAN tag for
each outgoing link of sj . In the example, s2 and s6 receive the
same control packet twice from the same incoming interface
and yet must forward to different outgoing links at each
time. Since there is no 1-1 mapping to an incoming interface,
incoming switch port cannot be used as a differentiating field.
Consider first s2. We first assign each outgoing interface a
VLAN tag, vlan1 to e23 and vlan2 to e21. Table I shows the
matching rules with these tags. Now, the question is which
switches as a forwarding action should tag the control packet.
The walk example corresponds to clockwise direction over
the logical ring depicted at the bottom-right corner of Fig. 3.
Iterating back from the tagged interface, we inspect the ring in
the counter clockwise direction to identify a switch that can
reuse its existing matching rule and add VLAN tagging to
the action set of that matching. For instance, starting from e23
tagged with vlan1 and traversing the ring in counter clockwise
direction, we first reach s5. But, s5 is visited twice on the
ring and has only one forwarding rule. Thus, we rule it out as
a candidate. Moving counter clockwise direction further, we
hit s1 that occurs once in the ring and has one forwarding
rule. Hence, adding VLAN tagging with vlan1 into its action
set would not possibly contradict with another forwarding
decision taken at the same switch. We repeat the process
with e21 tagged with vlan2. Walking in counter clockwise
direction, we reach s5, s6, and s3 that cannot add a tagging
action either because they require an additional forwarding
rule (s5, s3) or their forwarding rules are not yet specified
(e.g., s6). Taking one more step counter clockwise, s4 occurs
only once on the ring and without modifying its matching
rule we can add an additional VLAN tagging action. The only
outstanding switch with no forwarding rules specified is s6
at this point. We first check if we can piggyback on existing
VLAN tags vlan1 and vlan2. Indeed, we can reuse vlan1 for
e67 and vlan2 for e65 as shown in Table I.
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Fig. 4: An example of bidirectional logical ring topology.

E. How do controllers verify the topology connectivity?

By constructing a single closed walk that visits each edge
(or arc) at least once, we formed a logical ring topology
where all switches in the forwarding plane are part of. Thus,
any controller Ci can use any sj ∈ Di to inject a control
packet for topology verification. In our example in Fig. 1
and using forwarding rules in Table I, C3 can use s4 or
s7 to inject a packet with its source IP address set to IPA.
Similarly C1 can use s1, s2, or s5 and C2 can use s3 or s6
to inject the same control packet. Controllers must initialize
the control packet header properly. E.g., if s2 is the injection
point, according to Table I, not only the source IP address
but also the VLAN tag must be assigned a valid value. In
OpenFlow protocol, controllers can either tell the switch to
which outgoing interface the control packet should be sent to
or tell the switch to treat the packet the same as a packet
coming from a particular incoming interface. In either case,
the injection point is where the walk starts and once a packet
is injected unless there is another rule specified, it would be
indefinitely looped around the logical ring topology. Therefore,
controllers must break the loop by defining a loopback rule
at the injection point so that when the packet completes the
walk, the packet is forwarded back to the controller that
injected the packet. This loopback rule can be dynamically
installed to any switch in a controller’s current control domain.
Naturally, loopback rules must have priority over the static
rules installed for the closed walk. Since multiple controllers
might be simultaneously inspecting the topology, this loopback
rule must uniquely identify the controller. A simple solution is
to use destination MAC address field and install a forwarding
rule at the injection point that matches this field to MAC
address of the injecting controller. Thus, each controller must
also set this field in the packet header before it injects it. An
alternative is to use TTL field in a matching rule (i.e., check
if TTL == 0) and set the initial value of TTL in the control
packet header to the length of the walk at the controller. The
action set then must include a ”decrement TTL” action in
every hop.

V. LOCATING AN ARBITRARY BUT SINGLE LINK FAILURE

The solution to locate an arbitrary link failure (when one or
more link failures occur) is based upon constructing a bidirec-
tional logical ring topology. At the high level, controllers inject

multiple control packets each inspecting a different segment of
the ring. Depending on which control messages are received
back or not by the originating controller, the controller not
only detects link failures but also guarantees to locate one of
the failed links.

We use the solution Wopt in the previous section as
a clockwise walk on this logical ring. We also define a
counter clockwise walk Wrev

opt by reverting the arcs. E.g., for
Wopt = s1 → s5 → s2 → s3 → s6 → s7 → s4 → s3 →
s6 → s5 → s2 → s1, Wrev

opt = s1 ← s5 ← s2 ← s3 ←
s6 ← s7 ← s4 ← s3 ← s6 ← s5 ← s2 ← s1. Since we
assume bidirectional links, Wrev

opt is a valid closed walk over
both Gu and Gd. Further, Wrev

opt is also a solution to CPP
(i.e., Wrev

opt has length Lopt) and it requires the same number
of forwarding rules as Wopt (i.e., κ(Wopt) = κ(Wrev

opt)).
Once the distinct forwarding rules for Wopt and Wrev

opt are
installed, any controller can attach to this logical ring from any
switch in its D and inject control packets that traverse it in
either clockwise or counter clockwise direction. Fig. 4 shows
an example of the logical ring constructed for the forwarding
plane topology in Fig. 1. We label each node on the logical ring
uniquely as vi, i = 1, . . . , Lopt. A switch on the forwarding
plane can map to multiple logical nodes on this ring. Define
f(vi) as the surjective function that maps virtual nodes on
the logical ring onto the switches in the forwarding plane. In
Fig. 4, actual switch IDs are shown within the circles and
virtual node labels are indicated next to them.

To be able to locate a link failure, we should be able to
inspect any segment of the logical ring. For this purpose, we
also install bounce back rules at each node of the logical
ring. Suppose we use source IP address field to differentiate
between the directions on the ring, e.g., IPA is used for Wopt

and IPB is used for Wrev
opt. The bounce back rule at a node

reverses the clockwise walk to the counter clockwise walk.
Suppose, we assign each virtual node vi a unique IP address
IPvi . A bounce back rule can be specified by using various
fields in the packet header. Let us fix the destination IP address
for this purpose. For each logical node vi, a static bounce back
rule is installed on f(vi) in the following form

If source IP == IPA ∧ destination IP == IPvi then set
source IP to IPB and send back to incoming port.

Note that a bounce back rule must always have a higher
priority than a forwarding rule for Wopt when a packet has
matching fields for both rules. When a controller (e.g., C1

in Fig. 1) injects a packet at f(vin) (e.g., when vin = v11,
f(vin) = s1) with source IP address set to IPA and destination
IP address set to IPvk (e.g., IPv5 ), the packet travels in
clockwise direction from vin (e.g., v11) to vk (e.g., v5) and
travels back to vin in counter clockwise direction over the
constructed logical ring. As before, the controller must install
a loopback rule at injection point f(vin) (e.g., s1) so that the
switch f(vin) forwards the packet back to the controller rather
than forwarding it along Wrev

opt.
Once the static rules for Wopt, Wrev

opt and bounce back
as well as the dynamic loopback rules are in place, each
controller can fix an injection point on the logical ring and
perform a binary search over the ring by eliminating half of
the links from consideration at each iteration. For instance,
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if the link between s4 and s7 fails, C1 can learn about this
using the ring topology in Fig.4 as follows. First C1 determines
whether all the connections are healthy or not by injecting a
control packet for topology verification (e.g., source IP is set
as IPA). The packet never comes back to C1 indicating one
or more link failures. Next, C1 targets half of the logical link
topology by sending a control packet with source IP as IPA

and destination IP as IPv5 . The packet is received back as
there are no failures in this segment. C1 expands the search
up to v8 by setting the source IP as IPA and destination IP as
IPv8 . As this part of the ring includes the failed link, C1 does
not receive the packet back. C1 shrinks the search up to v6
and injects a fourth control packet with source IP set to IPA

and destination IP set to IPv6 . Since C1 does not receive this
fourth packet, but it received back the second packet, C1 can
conclude that the link between s4 and s7 has failed.

Note that when there are multiple link failures, the binary
search mechanism would locate the first failure in the clock-
wise direction from the injection point of the logical ring. E.g.,
if e25 and e47 fail and C1 uses v11 as the injection point, the
procedure above would be able to locate only e25.

A. Cost of Locating a Single Link Failure

Counting the rules for Wopt, Wrev
opt, and bounce backs,

the total number of static rules to be installed can be written
as 3Lopt − 2κ(Wopt). Since κ ≥ 0 and Lopt ≤ 2|E|, the
total number of static rules is upper bounded by 6|E| for
both symmetric and asymmetric failures. As locating a link
failure trivially verifies the topology and topology verification
requires at least |E| and 2|E| rules for symmetric and asym-
metric cases, respectively, we can easily establish the order
optimality of our solution.

Including the topology verification stage, the solution re-
quires at most K = 1 + ⌈log2(Lopt)⌉ control messages
to be injected. Interpreting each control packet as a binary
letter, |E| edges and 2|E| arcs cannot be all checked with
less than log2(|E|) and log2(2|E|) = 1 + log2 |E| messages,
respectively. Hence, we also have optimality in number of
control packets for both symmetric and asymmetric cases.

We can find the best case and worst case time delays as
follows. For simplification, suppose Lopt is a power of two.
The best case delay happens when each subsequent control
message travels a shorter distance (i.e., exactly half of the
previous one). Hence, the best case failure scenario is when the
failed link occurs on the logical ring next to the injection point
in the clockwise direction. Brute-force summation over these
paths including the topology verification stage amounts to
(3Lopt−2) hops in total. The worst case delay happens when
each subsequent control message travels a longer distance (i.e.,
increase exactly by half of the not inspected part of the ring).
In other words, the worst case failure scenario happens when
the failed link occurs on the logical ring next to the injection
point in the counter clockwise direction. Again a brute-force
summation over the path lengths of each control message
including the topology verification stage results with total hop
count of Lopt(2 log2(Lopt) − 1) + 2. With per hop delay of
τ = τs + τp, the latency becomes T + 2Kτc, where T is

bounded as:

(3Lopt − 2)× τ ≤ T ≤ [Lopt(2 log2(Lopt)− 1) + 2]× τ

B. Speeding Up Search Time

To reduce the latency of failure location, we can trade off
latency with more control messages and/or forwarding rules.

1) More Control Messages: Instead of just performing a
sequential search on the logical ring, we can use more control
packets to parallelize the search. If we allow m control
message to be injected in parallel, we can inspect (m + 1)
segments of the ring at once. We can then reduce the number
of iterations to α = ⌈logm+1(Lopt)⌉. Including the topology
verification stage, the total number of control messages M
become 1+mα. In exchange, a trivial upper bound on latency
(TUB) can be expressed as (1+2α)Loptτ+[2+(m+1)α]τc.

2) More Static Rules: Instead of starting the search only
in the clockwise direction, we can use both directions on the
ring. To enable this, we can install bounce back rules at each
vi on the ring topology to reverse Wrev

opt onto Wopt. For this
we can assign a second unique IP address IP

(2)
vi to each vi

and install a rule at each f(vi) as follows:
If source IP == IPB ∧ destination IP == IP

(2)
vi then set

source IP to IPA and send back to incoming port.
After determining which half of the ring has a faulty part,

provided that the fault is closer to the injection point in the
counter clockwise direction, we can switch the search direction
to shorten the walk distance. For large topologies, this would
cut down the worst case latency of locating a single link failure
roughly by one half. Note that adding a second set of bounce
back rules still preserves order optimality in number of static
rules, which is now 4Lopt − 2κ(Wopt) ≤ 8|E|. The new
upper bound T ∗

UB becomes (1+α)Loptτ + [2+ (m+1)α]τc.

VI. LOCATING MULTIPLE LINK FAILURES

For arbitrary topologies, one cannot guarantee to locate
multiple link failures, e.g., when forwarding plane itself is
partitioned due to link failures and the controller cannot reach
one of the partitions with multiple link failures.

Nevertheless, by building on the solution in the previous
section, we can detect more than one link failure in a proba-
bilistic sense. First, a controller may have a switch in its D in
multiple locations on the logical ring. Further, it has typically
more than one switch in its D at any given time. Thus, it can
tap on the logical ring at multiple points and locate the first
failure in the clockwise direction from each of these points.
If the second set of bounce back rules are also installed, it
can also detect potentially other failures that are closest to
each injection point in the counter clockwise direction. Note
that there are no guarantees that these detected failures map
actually to the same link. Thus, with probability one, we locate
at least one link failure and at non-zero probabilities up to
2×β(D,Wopt) failures might be located. Here, β(D,Wopt)
counts the total multiplicity of switches in D on Wopt.
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VII. EVALUATIONS OVER REAL TOPOLOGIES

In the previous sections, we already presented bounds on
the number of forwarding rules and latency of the proposed
solutions, as well as the exact number of control messages.
Below, we provide more evaluations and contrast our solution
against existing alternatives such as LLDP approach used in
SDNs and Network-Wide Local Unambiguous Failure Local-
ization (NWL-UFL) proposed for optical networks [7].

We first present our evaluations over publicly available
topologies posted in Internet Topology Zoo with their sizes
varying from a few links to more than one hundred links. We
mainly investigate two things: (i) How close do we get to
the achievable lower bounds established for symmetric failure
cases? (ii) If we install bounce back rules for both Wopt and
Wrev

opt, how many failed links do we locate?
Fig. 5 plots the ratio (Lopt − κ(Wopt))/(|E| + |B|) as a

function of the topology size in number of edges |E|. We
label our solution in Algorithm 1 as Logical Ring. When the
ratio is one, Algorithm 1 becomes an optimum solution in the
number of forwarding rules for topology verification. This
is indeed the case for almost 60% of the topologies, indeed
our solution is optimum. Our solution remains within at most
14% of the optimum and 10% of the optimum for 98% of
the topologies. The lower bound is relevant only for solutions
that are tolerant against the partitions in the control domain.
LLDP based topology discovery is not partition-tolerant and
hence free of such constraints. In Fig. 5, LLDP is 36% less
costly on average in the number of static forwarding rules.

For the latency performance comparison, we model LLDP’s
performance with respect to the bottleneck switch s∗ with the
most number of links (|Es∗|). Since this switch has to process
2|Es∗| control plane messages over its slow path and each
LLDP packet crosses one link on the forwarding plane, LLDP
discovery period cannot be faster than 2|Es∗|τc + τ . At τ =
1µs, τc = 1ms, LLDP can achieve 14 ms discovery period
averaged over all topologies with the worst delay reaching
58 ms. Our solution requires at most 2.13 ms for topology
verification. When we set τ = 0.1ms and τc = 1ms, mean
and worst delays become 14.1 ms and 58.1 ms for LLDP,
whereas they become 5.9 ms and 14.9 ms for the logical ring.
Independent of τ and τc, LLDP requires 82 and 276 (i.e.,
packet-in + packet-out) messages between the controller and
the switches on average and in the worst case topology. In
contrast, logical ring requires 1 packet-in and 1 packet-out
message per discovery period independent of the topology.
Thus, LLDP is in general slower and more heavyweight on the
control plane than the logical ring method for the topologies
in the Internet Topology Zoo. In reality, we cannot allocate
the whole control plane bandwidth of the bottleneck switch
for LLDP packets, rendering the actual discovery period for
LLDP an integer multiple of the presented delay values.

Fig. 6 plots the number of static forwarding rules per
link required by our logical ring based failure localization
as well as NWL-UFL that uses multiple spanning trees, and
LLDP-based topology discovery. For our solution, we plot
(3Lopt−2κ(Wopt))/|E| after finding the logical ring by run-
ning Algorithm 1. As expected, the per link costs are between
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Fig. 5: Performance of Algorithm 1 in number of static
forwarding rules against LLDP.
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Fig. 6: Cost comparison for failure localization in number of
static forwarding rules.
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Fig. 7: Average number of detected failures per topology
across all 4-failure patterns with |D| = 1.

3 and 6 for all the evaluated topologies as 1 ≤ Lopt ≤ 2
and 1 ≤ (Lopt − κ) ≤ 2. 5.8% of the topologies have per
link cost of 3, 46% have per link cost ≤ 3.5, and 70% have
per link cost ≤ 4. Quite surprisingly NWL-UFL approach
requires substantially more forwarding rules than the known
lower bounds for using multiple trails (see Section VIII-A
for further discussion). LLDP has exactly the same cost for
topology verification and failure localization as it relies on
periodic topology discovery. LLDP is clearly a winner in terms
of the number of static forwarding rules it utilizes. Note that
neither NWL-UFL nor LLDP are designed with respect to our
design constraints, the first one violating control plane and data
plane decoupling while the latter violating the requirements on
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TABLE II: Failure Localization Latency (Logical Ring)
m 1 5 9 13 17
M 18 36 55 66 86

TUB , τc = 100τs 3.87 1.66 1.44 1.22 1.23
TUB , τc = 1000τs 3.9 1.7 1.5 1.29 1.31
T ∗
UB , τc = 100τs 1.99 0.89 0.78 0.67 0.67

T ∗
UB , τc = 1000τs 2.03 0.93 0.84 0.74 0.76

partition tolerance in the control domain.
Logical ring based solution uses periodic topology verifi-

cation, and once topology verification stage fails, it attempts
failure localization. Including the last topology verification
stage and assuming no parallelization, no extra rules, at
τ = 1µs, τc = 1ms, logical ring based localization 13.44
ms of average latency over 104 investigated topologies and
20.2 ms of latency in the worst case topology attaining better
performance than LLDP. These mean and worst latency figures
become 64.5 ms and 237.3 ms, respectively, at τ = 0.1ms,
τc = 1ms. In other words, when the forwarding plane latencies
increase, LLDP starts performing better and eventually beating
the logical ring approach.

Fig. 7 quantifies how many failures we can actually locate.
Provably, we already know that we can locate at least one. For
evaluations, we fixed the number of failures, but exhaustively
iterated over every failure combination on a given topology.
We then assumed that there is only one switch in D of a
particular controller and iterated over each switch as a possible
injection candidate to find out as a function of injection point
how many failures could be located. In the figure, we plot
the average number of detected failures where the average
is computed over all failure patterns and injection points for
a given topology. We fixed the number of failures to four as
larger number of failures was computationally quite prohibitive
for us. As it can be seen, for a great majority of cases, we
could actually locate two or more failures on average. For one
topology with as much as 39 edges, the average was at 3.6 (i.e.,
for many failure patterns we could detect all four failed links).
Note that although we consider only one switch in the control
domain of the inspecting controller, the same switch can occur
multiple times on the constructed logical ring. If a switch
occurs twice, using both Wopt and Wrev

opt, directions we can
locate up to four failures. In our evaluations, we observed that
a switch can occur three times for some topologies. Clearly,
not all occurrences lead to locating new failures. We also have
not observed any strong correlation between detecting more
than one failure and the topology size.

Next, we present numerical results for fat-tree topology
used commonly in data centers. For a fat-tree topology with
48-port switches (i.e., k = 48, |E| = 82, 944), logical ring
requires |E|+|B|

|E| = 4/3 and 3Lopt−2κ(Wopt)
|E| = 3 |E|+|B|

|E| = 4
rules per edge for topology verification and failure localization,
respectively. LLDP requires merely 0.37 rules per edge.

For the same fat-tree topology, at τ = 1µs, τc = 1ms,
the logical ring solution can complete topology verification
in 112.6 ms consuming 1 packet-out and 1 packet-in mes-
sage in the control plane. Logical ring utilizes 1.8% of the
control plane capacity for one switch and 0% of the control
plane capacity in the remaining switches. LLDP can complete
topology discovery in 96 ms consuming 30,528 packet-out and

165,888 packet-in messages, utilizing 100% of the interfaces
between the controller and each switch only for carrying
LLDP messages. Note that our assumptions are favoring
LLDP as we assume that distinct switches do not have shared
bottlenecks (e.g., network bandwidth, controller CPU, etc.). If
LLDP packets are limited to for instance 1.8% of the control
interface capacity to match the logical ring, its discovery
period increases to 5.3 seconds.

To quantify the worst case latency of failure localization
(including the preceding topology verification period), we
tabulate the upper-bounds TUB , T∗UB derived in Section V-B
in Table II for the fat-tree topology with 48-port switches and
for small m values and different τc. We set τ = τs = 1µs
as before. Sub-second failure localization becomes possible
using m = 5 parallel messages (M = 36 total messages) and
using 5.3 rules per edge. LLDP performance is the same as in
topology verification. Unlike LLDP, failure localization in our
solution is performed only when topology verification fails,
which is in general a rare event. Thus, failure localization using
logical ring has negligible impact on the long-term control
plane utilization, whereas LLDP must periodically perform its
heavy weight solution. As a compromised solution, one could
use logical ring for continuous topology verification and upon
failure detection, LLDP-based topology discovery can be run.
Since logical ring in data centers can be quite long, packet
losses become more probable. As logical ring is lightweight on
the control plane, control packets can be sent more frequently
to distinguish random packet losses from link failures.

VIII. DISCUSSION

Next, we discuss several important issues such as fully of-
floading failure localization to the switches, further improving
the number of forwarding rules for failure localization, and
handling dynamic topologies.

A. Offloading Failure Localization to Switches

One possible alternative to controller initiated and termi-
nated control flows is to make this control signaling an explicit
function of switches. This implies that we deviate from SDN
principles and have switches support control plane functions.
Then, pairs of switches serve as source and destination points
of control signaling. If the {source, destination} pairs and the
paths in between are selected carefully, one or more switches
that can tap into these control signals along the path can locate
link failures and report to their respective controllers. Note
that in our problem we require that as long as a controller
can reach to any arbitrary switch, the controller should be
able to diagnose the forwarding plane. In other words, all
the switches should be able to locate any failure event in
the forwarding plane when they tap into the control signals
crossing them. This problem is referred to as Network-Wide
Local Unambiguous Failure Localization (NWL-UFL) [7] in
optical network literature.

For NWL-UFL, the total number of links traversed by any
set of monitoring cycles is lower bounded by 2|E|(1− 1/|S|)
[7]. Without considering aggregation possibilities across trails,
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this also constitutes a lower bound on the number of forward-
ing rules. If each monitoring trail is a spanning tree (e.g., as
in [7]), then each link has to be traversed in both directions
requiring the total number of forwarding rules (without using
any rule aggregation) to be at least 4|E|(1 − 1/|S|). In
Section VII, our evaluations indicate that NWL-UFL using
the spanning tree solutions are substantially more costly than
our solution in the number of forwarding rules and also far
off from this lower bound.

For large enough |S|, the lower bound without any rule
aggregation simplifies to 2 forwarding rules per link in general
(or 4 when trails are picked as spanning trees). Single logical
ring requires ≥ 3 but ≤ 6 rules per link. In comparison to the
lower bounds: logical ring is competitive against any spanning
tree based solutions that does not perform rule aggregation,
yet in general there is significant gap to fill or otherwise need
tighter lower bounds for general cycles.

Next, we show that 2 static rules per link is actually suf-
ficient for failure localization without offloading this function
to the forwarding plane. The caveat is though we will take full
advantage of rule aggregation at the expense of using longer
control messages.

B. Two Rules per Edge for Failure Localization

In Section III-C3, we briefly covered how rule aggrega-
tion can be achieved via label switching and source based
routing when the same link is traversed in the same direction
repeatedly. In the most verbose form, each direction of all the
edges are assigned a unique label. Each switch has a unique
forwarding table rule per each of its interfaces in the form:

If outmost label == label(x), then pop the outmost label
and forward to interface x (*)

Then, a control packet would have a header with concatena-
tion of labels <label(a), label(b), label(a), label(c), label(d)>
to realize the walk [a, b, a, c, d]. Note that since the links are
bidirectional, we will have a total of 2|E| forwarding rules in
the form of (*). As a result, controllers can realize any walk as
long as it is feasible to initiate within their respective control
domains. For instance, walks on the logical ring that perform
binary search or parallel search can be all realized leading
to the same failure localization capability. In fact if one has
constructed a set of walks Ω that is optimal in some sense
under a given set of constraints, these static rules together with
source based routing are sufficient to realize them as long as
walks start and end within the domain of a controller.

For data-center scale topologies though, brute-worse ap-
plication of source based routing would lead to substantial
sizes for control packets. E.g., 2 bytes per label for a walk
of length 64K would lead to control packets larger than 128
Kbytes. Any control packet that has to go through packet
fragmentation/defragmentation due to MTU limits in the net-
work would be a poor design choice with sluggish delay
performance. Therefore, practical constraints on control packet
sizes and walk length require carefully crafting a set of static
walks that allows forwarding rule aggregation with a few label
concatenations. Existing spanning tree based constructions
may not be particularly well suited for this purpose. It remains
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Fig. 8: Example of expanding the existing forwarding plane
with a connected component.
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Fig. 9: Example of how a removed link is handled over
spanning tree based walks.

as an open problem how to craft these walks with constraints
on packet sizes and walk lengths while getting close to the
performance of two rules per edge for large topologies.

C. Dynamic Topologies

To increase the capacity or for maintenance purposes,
the physical network topology can be altered by adding or
removing new links and switches. In general, this requires that
we compute a new set Ωnew of walks for network diagnosis.
A new set of walks typically requires changing the existing
forwarding rules in a subset of switches. One exception is
when we use source based routing with unique labeling of
each directional edge: adapting against the topology changes
amounts to controllers recomputing the walks and injecting
new control messages with updated packet header. No rule
modification messages are needed. If source based routing is
prohibitive, however, we need to migrate some or all of the
existing static forwarding rules to the new set Ωnew depending
on topology changes and how much we want to preserve
optimality (e.g., in number of static rules).

We can provide meaningful solutions that lead to minimal
updates for the existing forwarding rules yet keep the total
number of forwarding rules below or at 2 rules per link
for topology verification and 6 rules per link for failure
localization using a spanning tree approach.

Spanning Tree-based Logical Ring: When we construct
the closed walk using a spanning tree, we visit each direction
of the link exactly once leading to 2 rules per link to realize
the clockwise walk, counter clockwise walk, and bounce back
rules. Since no directional edge is visited twice, a forwarding
rule solely based on the incoming port and packet identifier
would be sufficient.
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The benefit of settling with this upper bound is that adding
an arbitrary set of new nodes and links to the forwarding
topology can be accommodated by simply expanding the
existing spanning tree. The border switches relative to the
new set of links are the only ones that require one rule
modification and one rule addition. In Figure 8, the original
network topology (Net-1) is expanded by a new set of switches
and links (collectively referred to as Net-2). The spanning tree
based backbone of Net-1 and Net-2 are shown with green
and purple patterned circles, respectively. The links that are
not part of the spanning tree should be traversed as well.
For this reason with solid blue colored circles we terminate
such dangling links by duplicating the switches that comprise
the other end of the link. The arrows on both side of the
links indicate the direction of the closed walk. When Net-2 is
added, s5 must modify the matching rule for control packets
arriving over interface e65 (i.e., instead of sending the control
packets onto e56 it now sends to e58). Also, as no forwarding
rule exists for packets coming over e85, a new matching rule
for incoming interface e85 should be inserted with forwarding
action towards interface e56. These modifications and additions
are shown by dashed red arrows. The rest of the forwarding
rules in Net-1 remains intact.

Removal of some links can be handled by pruning these
links from the existing spanning tree and finding a minimum
number of edges to maintain spanning tree for the remaining
links. We need up to three rule changes per removed link (two
rule changes at one end of the interface and one rule change
at the other end). In Figure 9, network administrator wants
to bring down the link between s3 and s6. To orchestrate this
alteration, the forwarding rule on s3 for the incoming interface
e23 must be modified to forward the control packets onto e34
instead of e36. On s6, we need two rule changes as the control
packets coming from interface e76 are now forwarded towards
e65 and packets coming from e56 are switched onto e67. In the
special case of removing a bridge link, one or two rule changes
would suffice. E.g., in Fig. 9 the removal of link between s6
and s5 leads to the modification of one forwarding rule at s6.

IX. CONCLUSION

We presented new results on how to diagnose the forwarding
plane of SDNs using static forwarding rules. Our results
are provably either optimal or order-optimal in terms of the
number of static forwarding rules and control messages. For
topology verification, the evaluations over real topologies re-
vealed that our solution stayed within 14% of the lower bound
and for more than half the topologies matched the lower bound
in number of control messages. We also presented latency
performance. At the expense of slight increase in bandwidth
usage and forwarding rules, sub-second delays in locating link
failures even at data-center scale topologies are achievable.
Our solutions guarantee locating a single link failure, but can
also probabilistically locate multiple link failures as dictated
by the topology and failure patterns.
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