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Abstract—The Internet routing ecosystem is facing compelling
scalability challenges, manifested primarily in the rapid growth of
IP packet forwarding tables. The forwarding table, implemented
at the data plane fast path of Internet routers to drive the packet
forwarding process, currently contains about half a million
entries and counting. Meanwhile, it needs to support millions
of complex queries and updates per second. In this paper, we
make the curious observation that the entropy of IP forwarding
tables is very small and, what is more, seems to increase
at a lower pace than the size of the network. This suggests
that a sophisticated compression scheme may effectively and
persistently reduce the memory footprint of IP forwarding tables,
shielding operators from scalability matters at least temporarily.
Our main contribution is such a compression scheme which, for
the first time, admits both the required information-theoretical
size bounds and attains fast lookups, thanks to aggressive level
compression. Although we find the underlying optimization
problem NP-complete, we can still give a lightweight heuristic
algorithm with firm approximation guarantees. This allows us
to squeeze real IP forwarding tables, comprising almost 500,000
prefixes, to just about 140–200 KBytes of memory within a factor
of 2–3 of the entropy bound, so that forwarding decisions take
only 8–10 memory accesses on average and updates are supported
efficiently. Our compression scheme may be of more general
interest, as it is applicable to essentially any prefix tree.

Index Terms—IP forwarding, prefix trees, data compression

I. INTRODUCTION

The number of routers, end-hosts, and Autonomous Systems
that together comprise the Internet is increasing at a fast
pace, and there is no sign of this trend slowing down any
time soon. Correspondingly, it is widely recognized that the
Internet routing ecosystem is facing significant long-term
scaling challenges [1]. Beyond the natural expansion of the
network, there are various additional factors that contribute
to the rapid growth of the routed IP address space, like
the wide-scale use of non-aggregatable provider-independent
addresses and site multi-homing, prefix deaggregation for
inbound traffic engineering, fragmentation of the address space
due to the depletion of the allocatable IPv4 address pool and
the spreading of IPv6, etc [2]–[4]. Naturally, this takes its
toll on the Internet routing infrastructure, manifested as ever
higher volumes of BGP signaling load at the control plane and
rapidly expanding IP forwarding tables at the data plane. While

the control plane challenge might not pose as significant of a
concern [5], [6] as it was originally believed [1], data plane
scalability has remained mostly an unsolved issue this far.

The IP forwarding table (Forwarding Information Base,
FIB) lies at the heart of packet forwarding in IP routers.
The FIB is essentially a giant database, associating to each
individual routed IP address prefix the identifier of the next-
hop router along the best path towards that prefix. The FIB
is consulted on a packet-by-packet basis, which amounts to
tens of millions of complex longest prefix match queries per
second, and its content needs to be modified several thousands
times per second during BGP update storms.

Easily, the larger the routed address space the more entries
the FIB maintains, and this expansion has been anything but
slow lately. According to our measurements as of May, 2014,
IPv4 FIBs have gained 25, 000 new records just in the last
6 months, boosting FIB size to a whopping half a million
entries. Correspondingly the FIB, as implemented in the Linux
kernel [7] for instance, has grown from 24 Mbytes to more
than 32 Mbytes in size. This expansion rate greatly outpaces
the growth of fast cache available on commodity hardware, let
alone commercial routers’ expensive and hardly upgradeable
embedded SRAMs, and this is beginning to present a critical
performance bottleneck in the data plane performance [8]. Just
downloading a FIB of this size to the Linux kernel takes almost
5 minutes, with similar control plane to data plane delays
reported in commercial IP network gear [9].

Scalability concerns notwithstanding, exploding FIB sizes
cause further headache to operators. Expanding fast memory
on router line cards increases silicon footprint, heat production,
and power budget, and forces operators into frequent and
costly upgrades [10], [11]. Factor in the increasing popularity
of network virtualization, which means that today a single
physical router hardware needs to host many IP virtual routing
instances, each with its own largish FIB, side-by-side [12].
Hence, even if Moore’s Law will save the day in the long run
(which may [13] or may not [1] be the case), growing FIB size
still jeopardizes the very profitability of service providers by
skyrocketing the CAPEX/OPEX associated with maintaining
and operating the network infrastructure.

Strikingly, it has been reported recently that the information-/978-1-4799-6204-4/14$31.00 c©2014 IEEE
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Fig. 1: Number of IPv4 prefixes and information-theoretical
FIB entropy bound as observed on rtr.bme.hbone.hu

during 6 months in 2013 and 2014.

theoretical entropy of IP forwarding tables is surprisingly
low, implying that IPv4 FIBs can be compressed remarkably

efficiently [14], [15]. In particular, it was shown that an ordi-
nary DFZ (Default Free Zone) FIB, when compressed using
a sophisticated encoder, needs only 1–1.5 bits(!) of storage
space per IP address prefix, and still supports millions of
longest prefix matches and hundreds of thousands of updates
per second. What is more, as the compressed FIB occupies
smaller space it can move closer to the CPU in the cache
hierarchy in a software router, or may fit entirely into the line
card SRAM of a hardware router, and accordingly lookups

on the compressed form are often even faster than on the

uncompressed one.
In this paper, we make the further observation that over time

the entropy of IP FIBs seems to grow slower than the number

of prefixes. We have downloaded1 two dozen IP FIBs every
day during 6 months from operational IP routers located in the
US academic IP backbone Internet2 and its Hungarian
counterpart, the HBONE. Fig. 1 depicts the number of IP
prefixes as seen at one of the core HBONE routers, along
with the information-theoretical entropy bound. The entropy
bound seems to grow at a slow pace, by a mere 2 KBytes
during this half year interval, and this trend appears to be
fairly general across the FIB instances we have examined, with
DFZ FIBs compressing slightly better than those containing a
default gateway. We conclude that an entropy-bounded FIB

compressor may mask the expansion of the address space

over time, effectively shielding operators from Internet routing

scalability concerns.
FIB compression is an extensively researched field, with

many interesting proposals on the table [16]–[29]. To the
best of our knowledge though, none of these come with
stringent information-theoretic space bounds, which would be

1We have created a website we dubbed the Internet Routing Entropy

Monitor to publish browsable daily statistics and downloadable data sets for
the community, see http://lendulet.tmit.bme.hu/fib_comp.

needed to provide predictable storage size and performance
guarantees persistently. The only exception seems to be [14],
where a compressed re-invention of the conventional prefix
tree data structure is introduced and shown to satisfy certain
entropy-constrained space bounds. The basic idea is to elim-
inate recurrent sub-structures from the prefix tree yielding a
compressed prefix DAG (Directed Acyclic Graph), similarly
to how redundant sub-strings are eliminated by the Lempel-
Ziv text compression scheme [30]. Unfortunately, the resultant
prefix DAG is fundamentally binary, which transforms into 32
memory accesses during an IPv4 lookup in the worst-case (and
way worse with IPv6), hardly scaling to gigabit line-speeds.

Our main contribution in this paper is the application of

the level-compression technique to prefix DAGs, in order to
eliminate excess interior nodes from the FIB representation
thereby cutting down the number of memory accesses per
lookup. This leads us to a level-compressed prefix DAG

scheme that attains both information-theoretically minimal

space and improved lookup performance at the same time2. A
rudimentary level-compressed serialization scheme for prefix
DAGs was already proposed in [14]. Herein, we show how to
do level-compression optimally. Our level-compressed prefix
DAGs occupy 25% smaller storage space than binary ones in
general, while sustaining 5–10% higher lookup speed. Mean-
while, obtaining the compressed form remains similarly simple
and updates can be supported with the same computational
complexity. Level-compressed prefix DAGs, furthermore, can
be created at each router locally, without the need to notify
neighbors, plus they remain fully compatible with contempo-
rary router ASICs [32], simplifying deployment to a software
upgrade. Our compression technique applies to essentially any
area where prefix trees are used, and therefore may be of
generic interest beyond the scope of IP routing.

The paper is structured as follows. After some background
on prefix trees (Section II) and stating the main problem
formally (Section III), first we analyze the computational
complexity of level-compressing prefix DAGs (Section IV).
Curiously, we find that, contrary to most prefix tree compres-
sion problems, the combined problem is NP-complete. Then,
we present an optimal Integer Linear Program and a very fast
heuristic algorithm and we show that the heuristics simultane-
ously delivers an approximate solution and a tight optimality
gap characterizing its quality, making it unnecessary to solve
the ILP in the first place (Section V). Finally, we evaluate the
performance of our algorithm in extensive numerical studies,
we measure the lookup and update performance on a prototype
Linux kernel implementation (Section VI), and then we draw
the conclusions (Section VII).

II. PREFIX TREES

Prefix trees, or tries, are amongst the most ubiquitous data
structures in computer science. Given a set of input strings and
some data associated with each string, a trie allows to access

2Earlier research, although termed under similar name [17], [31], was aimed
at a different purpose.
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Fig. 2: Representations of the Boolean function f(x1, x2, x3, x4) = x1 + x2x3 + x3x4: (a) truth table; (b) reduced binary
decision tree; (c) binary decision diagram; (d) level-compressed decision tree (d); and (e) level-compressed prefix DAG.

and update the data for any string in time proportional to the
length of that string [33]. Applications span a wide range, from
associative memories keyed over any ordered sequence, to
lookup tables, sparse bitmaps, XML DOMs, word completion
libraries and dictionaries, full-text indexes, etc. Prefix trees can
even be used for efficient sorting. Unfortunately, the memory
footprint can become huge, ruining performance on modern
CPUs due to cache misses. Correspondingly, space-efficient
trie representation has become a focal problem lately [34].

A popular application of prefix trees is binary decision

trees [35]. Suppose we are given the Boolean function
f(x1, x2, x3, x4) = x1 + x2x3 + x3x4 and we would like
to evaluate f very fast. A way to achieve this is to organize
the truth table of f (see Fig. 2a) into a tree and a set of
associated labels, with each leaf node corresponding to a key
whose label gives the result of evaluating f on that key. A
(reduced) binary decision tree is essentially such a trie where
identically labeled leaves descending from a common parent
are contracted (Fig. 2b). Then, evaluating an input equals
following the path in the trie traced out by the input values,
first x1, then x2, x3, and finally x4. The lookup operation
terminates when the search arrives into a labeled leaf. Note
that edge labels are not stored in the trie but instead implicit
in the ordering of the pointers laid out in memory. Thus, a
node’s position uniquely determines the associated prefix.

There are various ways to cut down the memory footprint
of binary decision trees (of which reduction is immediately
one option). For one, merging isomorphic subgraphs, taking
into account the labels on the leaves, yields a more space-
efficient binary decision diagram (Fig. 2c), also called a binary

prefix DAG. Whereas our sample trie representation contains
13 nodes and 12 pointers, the prefix DAG holds only 7 nodes
and 10 pointers. Meanwhile, lookup complexity (and the actual
lookup algorithm) do not change.

Trie compaction can even improve lookup performance in
certain cases. Instead of eliminating redundant portions of the
trie, one could go on and eliminate excess interior nodes to
obtain a level-compressed binary decision tree (see Fig. 2d).
Here, nodes can represent any succession of variables and
pointers are stored for each input combination that can show
up. In our example, for the input x1x2x3x4 = 0110 the
function f is evaluated as follows: first, at the root we check

b a n a n a b a
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Fig. 3: Trie representations for the string “bananaba”: (a)
binary prefix tree; (b) binary prefix DAG; and (c) level-
compressed prefix DAG. The third character of the string can
be accessed by looking up the key 3− 1 = 0102.

x1 and since its value is 0 we descend to the left sub-trie, then
we evaluate x2 and x3 simultaneously yielding the index 11,
following which we arrive to a leaf node so we immediately
return the corresponding label (i.e., 1). Not just that the number
of nodes and pointers drop by 2, but lookup now goes in only
3 steps instead of 4, provided that we can evaluate multiple
consecutive variables in constant time, which is usually true
on modern CPU architectures.

Another appealing application of prefix trees is compressing

and indexing textual data [36]. The idea is to map the string
to be compressed to a complete binary prefix tree, with each
leaf representing the symbol at the position corresponding to
its key (see Fig. 3a) and then convert this into a binary prefix
DAG (see Fig. 3b). Again, the space reduction is obvious. This
is so much so that the space to store a binary prefix DAG has
been recently shown to be proportional to the Shannon-entropy
of the input string [14], essentially realizing the theoretical
minimum of a zero-order string compressor [30] up to a
small constant factor and lower order terms. This still lags be-
hind optimal compression algorithms, like Huffman coding or
LZW [30], but crucially a prefix DAG also admits fast in-place

random access and update to the string, which traditional
compressors do not support without explicit decompression.
Level-compression could also be applied to save on access
time and storage space, but in this example this would give a
trivial one-level trie basically corresponding to an array.

The most important application of prefix trees within the
context of this paper is implementing lookup tables for IP
packet forwarding. As mentioned earlier, an IP FIB consists
of hundreds of thousands of entries, each entry specifying an
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Fig. 4: Representations of an IP forwarding table: (a) tabular representation, specifying for each prefix and prefix length pair
the corresponding next-hop label; (b) unnormalized prefix tree; (c) normalized (leaf-pushed) binary trie with the invalid label
⊥; (d) binary prefix DAG; (e) level-compressed trie; and (f) level-compressed prefix DAG.

address-prefix-to-next-hop-label association telling to which
neighbor to pass on a packet (see Fig. 4a). Multiple entries
may match a particular address, like in our example both the
111/3 → 2 and 1111/4 → 1 entries match an address starting
with 1111. In such cases the longest prefix match rule applies
and the entry fitting on the greatest number of bits (from the
MSB) takes preference. In our case, this means that the second
entry overrides the first one, resulting label 1 for the lookup.

Storing the FIB as a binary prefix tree (see Fig. 4b)
allows to find the longest matching prefix efficiently, in time
proportional to the width of the address space. Unfortunately,
this form is not really space-efficient. A simple way of space
reduction is leaf-pushing [19], yielding a normalized prefix-
free format after removing all less-specifics (Fig. 4c). Binary
prefix DAGs (Fig. 4d) also lend themselves as a space-efficient
FIB representation, inheriting the information-theoretical stor-
age size guarantees from string compression [14]. Level-
compressed prefix trees (Fig. 4e), on the other hand, have been
advocated for their vastly improved lookup performance [7],
[16], [37], [38]. Unfortunately, level-compressed prefix trees

lack the theoretically justified space-efficiency of binary prefix

DAGs, which in turn lack improved access and update times

of level-compressed tries. So far, satisfying both requirements
simultaneously has been an open research challenge.

III. PROBLEM FORMULATION

In this paper, we propose to combine level-compression and
prefix DAGs into a new compressed trie representation. The
resultant level-compressed prefix DAG (lcDAG) for decision
diagrams is given in Fig. 2e, for strings in Fig. 3c, and for IP
FIBs in Fig. 4f, respectively. Observe that in each case both
the number of nodes/pointers and the number of steps needed
to perform a lookup drop. Later, we shall show by extensive

numerical evaluations that these advantages manifest on real
instances as well. Thusly, our main concern now is to compress
a binary prefix tree into a level-compressed prefix DAG.

Definition 1. Given a set of strings S = {S1, S2, . . . , Sn}
defined on an alphabet Ω and for each S ∈ S a label lS taking

its value from an alphabet Σ, a prefix DAG (D, l) is tuple of

a rooted DAG D(VD, ED) and a label function l : VD 7→ Σ.

Each node v ∈ VD has |Ω|kv : kv ∈ N children and each edge

e = (v, u) ∈ ED represents a unique sequence of kv symbols

ce ∈ Ωkv , such that:

• the root r of D represents the empty prefix; and

• S ∈ S , if and only if there is a node v ∈ VD and a

directed r → v path p = {e1, e2, . . . , ek} : ei ∈ ED, so

that S = ce1ce2 . . . cek and l(v) = lS .

A prefix tree, or a trie, is a prefix DAG (D, l) where D is a
rooted tree. In this paper, we shall concentrate on the bitwise

case where the input are 0–1 strings: Ω = {0, 1}. Note that
any input can be represented this way by binary encoding the
symbols in Ω. We shall also assume that the input is prefix-

free, that is, no string in S is a prefix of some other string in
S . In addition, we presume that the input is proper, meaning
that if Xc ∈ S for some prefix X and c ∈ Ω, then the prefix
Xq also appears in S for all q ∈ Ω (i.e., there is some S ∈ S
so that Xq is a prefix of S). We have seen the leaf-pushing
algorithm as a simple example of how to pre-process the input
so that all these properties are fulfilled (but see also [36]). For
strings S that are introduced by the pre-processing algorithm
into S we set the invalid label lS =⊥, for a special symbol
⊥∈ Σ. Finally, we make the technical assumption that the label
alphabet Σ is not too large, say, |Σ| is O(polylog n) with n =
|S|, or even O(1). The assumption is trivially true for binary
decision diagrams, and it holds for many practically relevant



string compression [36] and FIB compression instances [39].
The prefix DAG for such a bitwise, prefix-free, proper input

has the property that every node v is either a labeled leaf or
it is an interior node with 2kv outgoing edges, where 2kv is
called the stride size of v for some kv > 0 integer. Such prefix
DAGs are called leaf-labeled and proper, and also binary if
kv = 1 uniformly at all nodes or multibit otherwise.

If we seek our data structure in the form of a binary prefix

tree (T, l), then we can build (T, l) in O(n log n) time and
O(n log n) space, of which accessing or updating any element
is possible in O(log n) steps. Our task is then to improve these
bounds. That is, we want to compress (T, l) to an alternative
form (D, f) so that
(i) (D, f) is semantically equivalent with (T, l), denoted by

(D, f) ∼ (T, l), meaning that for any binary string S ∈
{0, 1}W , where W is the length of the longest string in
S , the lookup operation yields precisely the same label
on (D, f) and (T, l); and

(ii) the amount of memory M(D, f) needed to store (D, f)
is minimal and meets firm information-theoretical storage
size bounds [14], [15], [34], described below3.

Proposition 1. Given a proper, binary, leaf-labeled trie (T, l)
on n leaves labeled on an alphabet Σ of size σ = |Σ|:

• the information-theoretic lower bound for storing (T, l)
is 2n+ n lg σ bits4; and

• the zero order entropy of (T, l) is 2n+ nH0 bits, where

H0 =
∑

c∈Σ

pc log2 (1/pc)

denotes the Shannon-entropy of the leaf-label probabili-

ties pc = nc/n, nc = |{v ∈ VT : l(v) = c}|.

A. Compressing into a Binary Prefix DAG

One way to reduce the memory footprint of a prefix tree is to
convert it into a binary prefix DAG. Correspondingly, the MIN-
BINPREFIXDAG problem asks for compressing (T, l) into a
binary prefix DAG (D, f). The following claims apply [14],
[15].

1) MINBINPREFIXDAG can be solved in O(n) time;
2) (D, f) can be stored on at most 4n lg σ + o(n) bits,

under the assumption that the length of each string in S
is W and n = 2W (i.e., (T, l) is a complete binary trie);

3) if H0 < lg σ, then the expected size of (D, f) is (6 +
2 lg 1

H0

+ 2 lg lg δ)H0n+ o(n) bits;
4) accessing any element in (D, f) can be done in O(log n)

steps; and
5) updating (D, f) can be done in O((1+1/H0) log n) time.
In summary, a binary prefix DAG compresses a prefix tree

to at most roughly four times the information-theoretic limit
(so it is a compact data structure) and six times the entropy (so
it is also a compressed data structure) [34]), without hurting
lookup and update performance in any ways.

3Note that the original paper [14] states the space bounds erroneously. In
this paper we give the correct bounds; see also [15].

4The notation lg x is shorthand for ⌈log2(x)⌉.

B. Compressing into a Level-compressed Prefix Tree

Alternatively, we could seek the output in the form of a
level-compressed trie. The corresponding form of the trie com-
pression problem is called MINLEVCOMPTRIE. The following
observations apply [37], [40]:

1) MINLEVCOMPTRIE can be solved in O(n log n) time;
2) lookup on (D, f) terminates in O(log n) steps as worst-

case and in O(log log n) steps on a broad class of
inputs [40]; and

3) update terminates in O(log n) steps provided that the
maximum stride size is O(1).

In summary, solving MINBINPREFIXDAG yields a data
structure with appealing entropy-bounded storage size guar-
antees, while MINLEVCOMPTRIE results blazingly fast
O(log log n) lookup performance [7].

C. Compressing into a Level-compressed Prefix DAG

Our main observation in this paper is that by combining
level-compression and binary prefix DAGs into a new trie
compression scheme, one can realize the advantages of both
techniques simultaneously.

Definition 2. MINLEVCOMPDAG: given a proper, leaf-

labeled, binary trie (T, l) find a proper, leaf-labeled, level-

compressed prefix DAG (D, f), so that (D, f) ∼ (T, l) and

M(D, f) is minimal.

With a slight abuse of notation, we shall denote by
MINLEVCOMPDAG(k) the decision version of the problem
where the task is to decide whether a prefix DAG (D, f) exists
with M(D, f) ≤ k for some positive integer k.

In what follows, we generally assume that the storage size
M(D, f) is dominated by the number of (constant size) point-
ers, thus omitting the σ lg σ bits needed to describe the labels.
This assumption is mostly in line with the literature [16], [40].
For simplicity, we initially focus on the static version of the
problem, and we shall return to the question of updates only
later in Section VI.

IV. COMPLEXITY

Next we turn to our main contributions. First, we analyze
the computational complexity of MINLEVCOMPDAG.

So far, we have seen that level-compression and binary

prefix DAG compression alone are both tractable in (roughly)
linear time. Interestingly, their combination appears difficult.

Theorem 1. MINLEVCOMPDAG(k) is NP-complete.

The proof can be found in the Appendix. The transformation
is from the maximal independent set problem in 3-regular
(cubic) graphs [41].

This finding is not completely unexpected. The example in
Fig. 4 demonstrates that a naive “trie-threading” approach [14],
[42] that would simply identify and share isomorphic sub-tries
directly on the level-compressed tree fails to find the correct
result. The other way around, that is, level-compressing the
binary prefix DAG would not work either. Instead, one has to,
at each node, deliberately balance between whether to merge



isomorphic children or compress a level, taking into account
that over-expanding the stride of a node may destroy otherwise
shareable trie instances below, while shrinking the stride too
much introduces excess intermediate levels. It turns out that
making this decision optimally is difficult.

V. A HEURISTIC ALGORITHM

It seems that solving MINLEVCOMPDAG to optimality is
hard. Instead of shooting for optimality, therefore, below we
present fast heuristic algorithms. These not only output an
approximate solution rapidly but also supply an upper bound
as well as a lower bound on the memory consumption of the
optimal solution, this way providing a thorough characteriza-
tion of the quality of the solution retrieved.

First, we need some notation. We are given a proper, leaf-
labeled, binary trie (T, l) as input. Denote the nodes of T by
VT , let r be the root node, and let LT be the set of leaves and
IT the set of interior nodes. Let n = |LT |. For any u ∈ VT let
h(u) denote the height of the sub-tree rooted at u, let d(u) be
the level of u, d(r) = 0, and let Pi(u) denote the i-th parent
of u for any i ∈ {1, . . . , d(u)} (i.e., P1(u) is the immediate
parent, P2(u) is the parent’s parent, etc.). We further assume
that we have a relation τ available that partitions the nodes
of T into equivalence classes based on whether the sub-tries
descending from those nodes are isomorphic. Namely, we treat
nodes u, v ∈ VT isomorphic, denoted as τ(u) = τ(v), if
either (i) u, v ∈ LT and l(u) = l(v) or (ii) u, v ∈ IT and
each of the left and right children are pairwise isomorphic.
In fact, τ could be thought of as a function that maps from
VT to the node set VD of a binary prefix DAG D(VD, ED).
As a matter of fact, D(VD, ED) is the smallest binary prefix
DAG representation for (T, l) and so finding τ is equivalent
to solving MINBINPREFIXDAG, which can be done in linear
time. We denote as τ−1 the inverse of τ , which to a DAG
node v orders the set of tree nodes isomorphic to v.

We take off from the trie level-compression algorithm of
Sahni et al. [40]. Consider the below dynamic program to
solve MINLEVCOMPTRIE.

xu = min
i∈{1..h(u)}



2i +
∑

w∈VT :Pi(w)=u

xw



 ∀u ∈ IT (1)

xu = 0 ∀u ∈ LT (2)

Here, xu marks the amount of memory consumed by the
sub-trie rooted at node u in the optimal level-compressed trie.
Easily, the leaves store no pointers, and if an interior node
u chooses the stride 2i then the size of its sub-trie equals
the number of pointers descending from it (i.e., 2i) plus the
memory consumed by all the i-level children. Then, we seek
the stride that minimizes this expression, which can be done
for the whole tree in a bottom-up traversal. Unfortunately, this
algorithm only works for tries but not for prefix DAGs.

Our heuristic algorithm is a slight modification of this
scheme. The idea is that if multiple isomorphic tree nodes
choose the same stride size then these can be shared in the
level-compressed prefix DAG and thereby contribute jointly to

the memory consumption of that DAG node. Correspondingly,
we assign a non-negative weight parameter λi

u to each u ∈ VT

and each potential stride i ∈ {1..h(u)} and we impose the
correctness condition requiring that the weight of isomorphic
tree nodes at stride i adds up to 2i:

∑

u∈τ−1(v)

λi
u = 2i, λi

u ≥ 0 ∀v ∈ VD, ∀i ∈ {1..h(v)} . (3)

Choose some λi
u so that the correctness condition holds and

collect these into a single vector λ. Then, for each such λ we
define the following dynamic program DP(λ):

xu = min
i∈{1..h(u)}



λi
u +

∑

w∈VT :Pi(w)=u

xw



 ∀u ∈ IT (4)

xu = 0 ∀u ∈ LT (5)

The following observations are now immediate.

(i) If we apply no sharing of nodes (i.e., we set τ as the
identity function) and the correctness condition (3) holds,
then the dynamic programs DP(λ) and (1)–(2) coincide.

(ii) DP(λ) can be solved in a single bottom-up traversal in
O(n log n) steps similarly to [40].

(iii) From this we can recover a valid prefix DAG as follows:
We cycle through each tree node u ∈ VT and we note the
depth i at which (4) takes its minimum. If any isomorphic
tree node w has previously chosen the same stride, we
relabel the parent of u to w. Otherwise we insert u into
the DAG at stride i. This can be done in O(n log n) steps.

In summary, our dynamic program DP(λ) supplies a valid,
although not necessarily optimal, prefix DAG for any “correct”
λ in O(n log n) steps. The actual choice of λ is arbitrary
and we get different algorithms for each weight setting. The
heuristic nature of the algorithm lies in that we do not know
the weight setting that solves MINLEVCOMPDAG, not even
whether such weights exist at all. Curiously, we can still give
a characterization of the quality of the solution obtained and,
as it turns out, this holds over any correct setting of λ.

Let (D∗, f∗) be the optimal prefix DAG that solves MIN-
LEVCOMPDAG, let (Dλ, fλ) denote the prefix DAG obtained
by solving DP(λ), and let xr(λ) denote the value of the xr

variable that belongs to the root r in this solution.

Theorem 2. For any λ that satisfies (3):

xr(λ) ≤ M(D∗, f∗) ≤ M(Dλ, fλ) .

Accordingly, if we solve DP(λ) we not only get the
prefix DAG (Dλ, fλ) but also a lower bound xr(λ) and an
upper bound M(Dλ, fλ) on the optimal objective, providing
a qualitative measure on the goodness of the solution. This
measure is usually taken in the form of an optimality gap

µ(λ) =
M(Dλ, fλ)− xr

xr

. (6)

If µ(λ) is small, say, under 1–2%, we know that what we have
obtained is a prefix DAG very close to the optimal one, while
larger values indicate a poor quality result. This is why such



lower and upper bounds are extremely useful in constructing
approximation algorithms of verifiable performance [43].

The rest of this section is devoted to proving Theorem 2.
The part M(D∗, f∗) ≤ M(Dλ, fλ) is obvious as both
(D∗, f∗) and (Dλ, fλ) are feasible in MINLEVCOMPDAG
but the former is also optimal. What remained to be seen is
the part xr(λ) ≤ M(D∗, f∗).

The proof is built on defining an Integer Linear Program
(ILP), of which (D∗, f∗) will be a feasible solution and whose
linear programming relaxation will deliver an upper bound on
xr(λ). The ILP contains the following variables: let siu, u ∈
VT , i ∈ {1..h(u)} (respectively, ziv, v ∈ VD, i ∈ {1..h(v)}) be
an integer variable for each tree node u (for each DAG node
v), so that siu > 0 (ziv > 0) if and only if node u (resp. v) is
optimized to stride size 2i. The ILP itself is as follows.

z∗ = min
∑

v∈VD

h(v)
∑

i=1

2iziv (7)

d(u)
∑

i=1

siPi(u)
≤

h(u)
∑

i=1

siu ∀u ∈ VT \ {r} (8)

1 ≤

h(r)
∑

i=1

sir (9)

siu ≤ ziτ(u) ∀u ∈ VT , ∀i ∈ {1..h(u)} (10)

siu ≥ 0, siu ∈ Z, ziτ(u) ∈ Z ∀u ∈ VT , ∀i ∈ {1..h(u)} (11)

Here, constraint (8) requires that a node must show up in
the solution if any of its i-level parents chooses just the stride
size 2i. Condition (9) bootstraps the chain by requiring that the
root actually appear in the result. So far, we have only dealt
with tree nodes5. The constraints that link the tree solution to
the DAG are (10), guaranteeing that a DAG node appears in
the solution if any of the isomorphic tree nodes is set at the
same stride. The rest of the constraints set the domains for the
variables. Finally, the objective function sums the number of
pointers in the DAG, counting each isomorphic tree node that
happens to be optimized to the same stride size, and thereby
being merged into a single DAG node, only once. Denote the
optimal objective function value by z∗.

It is not immediately obvious but the above ILP, if solved,
delivers precisely the optimal level-compressed prefix DAG.
To actually see this, we would need to tediously work out that
at optimality all variables are binary and ziv = minu∈τ−1(v) s

i
u.

Instead, herein we confine ourselves to the following simple
claim (which we will not need later anyways).

Observation 1. The ILP (7)–(11) solves MINLEVCOMPDAG.

To actually prove the theorem, we need a weaker result.

Lemma 1. (D∗, f∗) is feasible in the ILP (7)–(11).

Proof. This is rather straightforward to show: for each node
v ∈ VD∗ , if v is set to stride size 2i then set ziv = 1 and set

5In fact, the ILP this far with the objective min
∑

u∈VT

∑h(u)
i=1 2isiu

would give a (rather inefficient) algorithm for MINLEVCOMPTRIE [16], [40].

∀u ∈ τ−1(v) : siu = 1, and set all variables to zero otherwise.
This way, (10) and (11) trivially hold, and (8) and (9) also
fulfill because siu = 1 : u ∈ VT makes up a tree.

Corollary 1. z∗ ≤ M(D∗, f∗).

Now, consider the linear programming relaxation of (7)–
(11) obtained by substituting constraints (11) as follows:

siu ≥ 0, siu ∈ R, ziτ(u) ∈ R ∀u ∈ VT , ∀i ∈ {1..h(u)} .

Letting xu to denote the dual variables associated with
constraints (8)–(9) and (with again abusing the notation a bit)
λi
u to denote the dual variables for (10), the dual problem for

the relaxed linear program is easily seen to be:

ẑ = max xr (12)

xu ≤ λi
u+

∑

w∈VT :Pi(w)=u

xw ∀u ∈ IT , ∀i ∈ {1..h(u)} (13)

∑

u∈τ−1(v)

λi
u = 2i ∀v ∈ VD, ∀i ∈ {1..h(v)} (14)

xu ≥ 0, λi
u ≥ 0 ∀u ∈ VT , ∀i ∈ {1..h(u)} (15)

Lemma 2. For any λ that satisfies (3) and any xu(λ) that

solves DP(λ), λ and xu(λ) are feasible in (13)–(15).

Proof. We observe that (14) is just identical to the correctness
condition (3) so it is satisfied by assumption, (13) trivially
holds by (4), and again (15) holds by assumption.

Denoting the optimal objective function value of (13)–(15)
by ẑ, we conclude:

Corollary 2. xr(λ) ≤ ẑ.

Putting this all together we get the following proof.

Proof of Theorem 2. We see that xr(λ) ≤ ẑ for any “correct”
setting of λ by Corollary 2; ẑ ≤ z∗ because by strong duality
ẑ equals the optimal objective value of the primal, which is
in turn smaller than z∗ by being a relaxation thereof; z∗ ≤
M(D∗, f∗) by Corollary 1; M(D∗, f∗) ≤ M(Dλ, fλ) was
seen earlier; thus we get xr(λ) ≤ M(D∗, f∗) ≤ M(Dλ, fλ)
which completes the proof.

As a final note, we emphasize again that this holds for any

choice of the weights λ as long as non-negativity and the
correctness condition (3) are respected. For the rest of this
paper, we use the simple weight setting that distributes the
cumulative weight 2i equally between the contributing nodes:

λi
u =

2i

|τ−1(τ(u))|
∀u ∈ VT , ∀i ∈ {1..h(u)} . (16)

VI. PERFORMANCE EVALUATION

We subjected our heuristic approximation scheme and the
resultant level-compressed prefix DAGs to comprehensive
performance evaluations. Our aims were to verify whether
and to what extent the theoretical storage size guarantees
hold, to study the quality of the approximation in terms of
the optimality gap worked out above, to examine how often



TABLE I: Results for different FIB-compression algorithms on real IP FIBs. The columns indicate the name of the FIB
instance, number of prefixes N , and number of next-hops σ in it; Shannon-entropy of the next-hop label distribution H0;
information-theoretic limit I and entropy bound E for storing the trie ([KByte]); and size (M , [KByte]) and compression
efficiency ν, for the fib_trie, level-compressed binary trie (lcTrie), binary prefix DAG (bDAG), and level-compressed
prefix DAG (lcDAG) FIB implementations.

fib_trie lcTrie bDAG lcDAG

N σ H0 I E M ν M ν M ν M ν

H
B

O
N

E bme 499,211 89 1.20 196 71 32198 451.05 635.95 8.91 203.72 2.85 162.05 2.27
szeged 499,236 87 1.20 196 71 32198 450.75 636.06 8.90 203.76 2.85 162.09 2.27
vh1 499,143 207 2.34 407 185 32197 173.60 1157.48 6.24 503.22 2.71 393.34 2.12
vh2 499,302 101 1.20 196 72 32202 450.31 636.49 8.90 204.13 2.85 162.36 2.27

In
te

rn
et

2 atlanta 14,312 93 1.91 38 14 1017 71.82 110.75 7.82 48.65 3.44 41.11 2.90
houston 14,305 101 1.12 38 14 1016 71.93 109.47 7.75 49.00 3.47 41.49 2.94
kansas 14,335 101 1.06 38 14 1019 73.31 110.43 7.95 47.38 3.41 39.99 2.88

ac
ce

ss

taz 410,513 4 0.97 94 56 26698 474.62 519.23 9.23 172.95 3.07 138.75 2.47
access(d) 444,513 28 1.61 206 95 28713 302.07 869.80 9.15 252.88 2.66 201.23 2.12
access(v) 2,986 3 0.99 3 2 192 88.99 15.23 7.06 8.26 3.83 7.16 3.32
mobile 21,783 10 1.62 1 0 290 655.67 2.47 5.59 1.27 2.88 1.19 2.69

level-compression should be re-applied, and to justify that the
complexity of the lookup operation indeed improves.

The inputs were as follows. For forwarding table compres-
sion we used real IPv4 FIBs obtained from operational Internet
routers. First, we used 4 DFZ instances from the HBONE (bme,
szeged, vh1, vh2) and 3 smaller FIB instances from the
Internet2 (atlanta, houston, kansas). These FIBs
were downloaded on 29 April, 2014, and represent the state-
of-the-art in IP routing tables as of spring 2014. We also
included 4 FIBs taken from [14], [15] in our evaluations. These
instances come from various service provider access net-
works: taz and access(d) are FIBs from the DFZ, while
the smaller access(v) and mobile FIBs contain default
routes. We also experimented with compressing and indexing
textual data. Here, we considered a zero-order source that spits
out Bernoulli-distributed symbols taken from a simple binary
alphabet. The first symbol appears with probability p and the
second with probability 1− p, and varying p allows to adjust
the entropy between 0 and 1. String length was set to 217.
Finally, we examined compressing decision trees of Boolean
functions arising from simple random 3SAT instances. Due to
space constraints, however, we cannot give the results here,
but we note that the conclusions were essentially the same.

We implemented each trie compression method discussed
in the paper. We used the algorithm (1)–(2) of Sahni et al.

to solve MINLEVCOMPTRIE (lcTrie); MINBINPREFIXDAG
was solved with the algorithm from [14] (bDAG); and we used
the algorithm outlined in Section V for MINLEVCOMPDAG
(lcDAG) with λ taken as of (16) and optimality gap µ as
(6). For reference we included in the evaluations the standard
Linux kernel FIB implementation fib_trie, an adaptive
level- and path-compressed multibit trie-based FIB code [7].

After compression, we serialized the resultant FIBs into a
binary blob, which was then fed into a custom kernel module
embedded into the Linux IP forwarding engine. The storage
scheme is as simple as it can get: after a header and some
metadata comes the next-hop table, which is then followed

sequentially by the prefix tree/prefix DAG nodes, first the
nodes with the largest stride and then subsequently the nodes
with smaller and smaller strides all the way to the leaves.
Children of a node are laid out sequentially in the file. The
id space is divided into two parts: the first part is used to
identify each node uniquely, while the last couple of ids are
allocated for next-hop labels. The number of bits needed to
encode the ids is taken as the base-2 logarithm of the size of
the id space obtained this way, and our home-grown packed-
array implementation [44] was used to encode these ids into
the serialized form. This scheme is universal in that it supports
any proper leaf-labeled input, i.e., it can be used to encode
each of the lcTrie, bDAG, and lcDAG forms. The FIB sizes
reported later correspond to the size of this serialized blob.
Compression efficiency was measured as the fraction of the
size of the compressed form to the theoretical entropy bound.
Easily, the smaller the compression efficiency the better.

The experiments were carried out on an Intel Core i5
processor, 3092.696 MHz, with 128 kByte L1 and 1024 kByte
L2 cache, and 6 MB L3 Cache, with 32 bit word size. We
aimed to measure the raw performance, so we used only a
single CPU core. Note that this platform is different from the
one used in [14] and the serialization schemes differ too, hence
the difference in the results.

A. Storage Size

The results for IP FIB compression are given in Table I.
Our first observation is that, even if the binary form already
admits very compact memory representation, the true power
of prefix DAGs manifests itself only with level-compression.
Our algorithm was able to compress DFZ IPv4 FIBs to only

about 140–200 KBytes of memory, sporting a compression

efficiency of roughly 2. The only exception is the vh1 FIB
instance, which contains extraordinarily many next-hops due
to operational reasons, this way doubling the entropy and
hence storage space. Interestingly, this instance produced the
best lcDAG compression efficiency amongst the DFZ FIBs.
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Fig. 5: Size and compression efficiency over strings with
Bernoulli distributed symbols as the function of parameter p.
The solid line marks the information-theoretic limit.

Contrast this with the latest reported FIB sizes for >400K
prefixes from the literature, ranging from 780 KBytes (DXR,
[27]) to 1.2 Mbytes (SMALTA, [20]). This is in line with
our results: binary prefix DAGs are in the 200–300 Kbyte
range for DFZ FIBs, exhibiting a compression efficiency of
more than 3, while compression efficiency is around 10 for
level-compressed prefix trees and rises to the hundreds with
fib_trie. As it is usual in data compression, larger FIBs
compress better than smaller ones.

We also observed the optimality gap µ of our heuristic
algorithm as defined by (6). As it turns out, our simple
heuristics gives an incredibly good approximation for IP FIBs,
since the optimality gap was only 1–2% in each case. This
indicates that the level-compressed prefix DAGs we obtained
are very close to optimum, making it completely unnecessary
to shoot for an optimal solution of the otherwise intractable
MINLEVCOMPDAG problem. Instead, our dynamic program
DP (4)–(5) runs in only about 70–110 milliseconds in general,
depending on the size of the input, the entropy, and other
parameters. This indicates that even if we were to implement
updates to the DAG by re-optimizing it from scratch after ev-
ery modification, we could still support tens or even hundreds
of updates per second (but see below).

We repeated the evaluations on textual input instead of
IP FIBs. Fig. 5 gives the results for the Bernoulli-source,
when varying parameter p from 0 to 0.5. Here, compression
efficiency is almost perfect for a uniform source, and it
gradually degrades for more biased symbol distributions (this
behavior is confirmed theoretically and empirically in [14])
but for all p ≤ 0.1 we can still squeeze the string below the
information-theoretic limit. Indeed, it is somewhat startling to
realize that we can get efficient compression just by storing a
string as a plain directed graph. Optimality gap was similarly
low as in the case of FIB compression, and running times were
also in the millisecond range.

B. Updates

As it turns out, adding a new entry to a prefix DAG or
deleting/modifying an existing one is far from trivial, not
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Fig. 6: lcDAG size for access(d) over a one hour BGP
update sequence when re-executing level-compression after
every 20, 30, or 60 minutes, or running it continuously (opt.).

because it is a DAG per se but rather due to that it is normal-
ized (leaf-pushed). Normalization is indispensable to reliably
identify shareable sub-tries and obtain good compression, but
also makes updates expensive as a label modification close
to the root may cause relabeling essentially all leaves. The
authors in [14] find a simple workaround: they observe that
at higher levels shareable sub-tries are rare and so normal-
ization is unnecessary, and by carefully controlling the level
below which leaf-pushing is applied they simultaneously attain
entropy-bounded space and close to optimal updates.

Even though this trick extends from binary prefix DAGs to
level-compressed ones transparently, we do not use it in this
paper. Rather, we used a simple update routine that blatantly
renormalizes the entire sub-trie affected by a label modifi-
cation. The reason is that we found even this naive update
implementation to work reasonably for the most common use
case: when updates arrive from BGP. As BGP originated FIB
updates are heavily biased towards longer prefixes, the size of
the sub-tries needed to be re-packed per update is usually very
small, and so even our simple routine works fast.

We modeled a real BGP router’s workload as follows. We
downloaded a BGP log from RouteViews, and we treated all
prefix announcements as generating a FIB update with a next-
hop selected randomly according to the next-hop distribution
of the FIB. The resultant sequence consists of 30, 000 individ-
ual updates, corresponding to roughly one hour of BGP churn,
with a mean prefix length of 21.8. We ran our update routine
on this input, in each run re-applying our heuristic level-
compression routine after every 20 minutes, 30 minutes, or 1
hour worth of BGP updates. The results for the access(d)
FIB are given in Fig. 6.

We expected the size of the prefix DAG to gradually
deteriorate with time as the updates ruin the delicate level-
compressed structure. Interestingly, the results did not confirm
this expectation: the prefix DAG seems mostly insensitive to
the interval with which level-compression is applied, with
about 1.5 KBytes of extra space accumulating initially but
mostly saturating afterwards. In addition, we could reach any-
thing between 13, 000–17, 000 updates per second on average



TABLE II: Lookup benchmark results for randomly selected IP addresses on real IP FIBs. Serialization is used with native
32 bit arrays. The columns indicate, for each of the fib_trie, level-compressed binary trie (lcTrie), binary prefix DAG
(bDAG), and level-compressed prefix DAG (lcDAG) FIB implementations, the mean height (h) and maximum height (hmax)
of the prefix tree/prefix DAG, the lookup performance in million lookups per second (mpps), the number of CPU cycles spent
per lookup (#CPU), and mean cache-miss rate per 10000 lookup operations (cm).

fib_trie lcTrie bDAG lcDAG

h hmax mpps #CPU cm h hmax mpps #CPU cm h hmax mpps #CPU cm h hmax mpps #CPU cm

H
B

O
N

E bme 2.43 8 4.07 758 23900 6.62 13 10.39 297 2145 25.85 31 10.69 289 1926 9.61 15 10.92 283 1903
szeged 2.43 8 4.09 756 23583 6.62 13 10.40 297 2135 25.57 31 10.69 289 1960 9.49 15 10.92 283 1902
vh1 2.43 8 4.09 754 23407 5.56 13 10.11 306 2533 25.52 31 9.92 311 2359 7.56 15 10.24 301 2247
vh2 2.43 8 4.05 763 24463 6.62 13 10.40 297 2137 25.86 31 10.69 289 1965 9.55 15 10.88 284 1902

In
te

rn
et

2 atlanta 3.37 10 5.87 526 2442 6.31 14 9.94 311 1803 29.45 31 10.65 290 1842 11.04 17 11.15 277 1834
houston 3.37 10 5.86 527 2476 6.15 14 9.99 309 1837 28.72 31 10.64 290 1839 11.12 16 11.11 278 1839
kansas 3.37 10 5.87 526 2496 6.04 15 10.21 303 1796 29.44 31 10.65 290 1836 10.89 16 11.25 274 1823

ac
ce

ss

taz 2.42 6 4.45 694 20735 6.53 13 10.57 292 2081 21.00 31 10.73 288 1882 7.75 16 10.96 282 1874
access(d) 2.44 8 4.25 726 21941 6.06 14 9.25 334 2417 28.85 31 10.81 286 2105 10.96 16 11.00 281 1982
access(v) 5.53 9 12.45 248 1798 10.31 15 12.94 239 1817 20.67 31 13.40 230 1828 10.67 18 14.83 208 1846
mobile 6.68 9 12.33 250 1813 9.70 14 14.13 218 1776 26.44 31 17.67 174 1828 11.00 16 22.56 137 1832

for the DFZ FIB instances, and even higher for the smaller
FIBs. This means that we finish with one hour of BGP
workload in about 2 seconds(!). While this performance seems
more than sufficient for the BGP use case, it may not be
sufficient for others. For such cases, adopting the algorithm
from [14] seems plausible, which would guarantee orders of
magnitudes faster update operations on any update pattern.

C. Lookup Performance

Finally, we subjected our level-compressed prefix DAGs
to extensive lookup tests on a real software router. Our
implementation runs inside the Linux IP forwarding engine,
hijacking the kernel’s network stack to send IP lookup requests
to our custom kernel module that in turn consults the serialized
blob as generated by the FIB compressor routines. We used
the standard Linux network micro-benchmark tool kbench on
our custom module [45], which calls the FIB lookup function
in a tight loop and measures the number of CPU cycles
burnt and the execution time with nanosecond precision. We
modified kbench to take a sequence of 1 million uniformly
distributed IPv4 addresses in the interval [0, 232 − 1]. The
route cache was disabled. We also observed the average and
maximum height of the compressed prefix trees and DAGs, as
these parameters together set the number of memory accesses
needed to trace down a key to a leaf. Finally, we measured the
number of CPU cache misses during each lookup by monitor-
ing the cache-misses CPU performance counter with the
perf(1) tool. For the experiment, we set the serialization
to native 32 bit arrays in order to eliminate any performance
toll of unaligned memory accesses in packed arrays. We then
repeated the experiment over packed arrays, and also over
a packet trace in the “CAIDA Anonymized Internet Traces
2012” data set [46] instead of random addresses, but the
outcome was essentially the same. Results for the random IP
address lookup benchmark are given in Table II.

We observe that, thanks to aggressive path- and level-
compression, fib_trie reduces the height of FIBs signifi-

cantly, resulting only about 2–3 memory accesses per lookup
for DFZ FIBs. We see, however, that essentially each of these
memory accesses generates a cache miss event6, confining
the CPU to spend numerous empty cycles waiting for the
result from the main memory to become available. This limits
performance at about 4 million lookups per second. Level-
compressed prefix trees take much smaller space, leading to an
order of magnitude fewer cache misses and two- to three-fold
increase in lookup performance. Binary prefix DAGs, on the
other hand, imply even fewer cache misses, but are slower due
to the vast interior nodes needed to be traversed during every
lookup. Our level-compressed prefix DAGs though seem to
unify the advantages of lcTrie and bDAG: the average height
and the memory footprint are small enough to warrant the best
lookup performance amongst the examined FIB compression
schemes. The performance gain, as compared to lcTrie, is
about 2–6% on DFZ instances and 10–60% on smaller FIBs.
The reason for this moderate gain seems to be our evaluation
platform that is just too powerful: with the exception of
fib_trie essentially all the rest of the FIBs fit into the L2
cache entirely, smoothing the differences. We expect that in a
hardware router with limited SRAM size or on very large FIBs
obtained by aggregating multiple virtual routers’ forwarding
tables [12], [47] the difference would be way more substantial.

VII. CONCLUSIONS

With the advent of big data, processing massive volumes
of information is becoming increasingly compelling. Com-
pressed data structures allow to squeeze large amounts of data
into size-constrained fast memory sidestepping the obligatory
space-time trade-off: the smaller the data structure the closer it
drifts to the CPU in the cache hierarchy, so we get even better
performing applications. Compressed data structures, however,
have yet to permeate the networking community as of now.

In this paper, we take on the quest to turn this trend
around. We were driven by the observations that (i) real-

6Note that cache miss rate is specified per 10000 lookup operations.



life IP forwarding tables are characterized by surprisingly
low information-theoretical entropy, suggesting that they may
lend themselves readily to a compression algorithm; (ii) FIB
entropy has grown at a low pace over the last couple of months,
indicating that the compression algorithm has the potential to
mask the effects of Internet growth from service providers,
at least temporarily; and (iii) the lookup performance offered
by the existing schemes that can take advantage of this and
compress to entropy bounds is generally not adequate to
support multi-gigabit line speeds [14].

To overcome this issue, we have combined two well-known
trie compaction techniques, level-compression and binary pre-
fix DAGs. Even though the underlying problem turned out
intractable, our heuristic algorithm proved an efficient approx-
imation scheme. We found that the resultant level-compressed
prefix DAGs fit below roughly 2–3 times the entropy bound
in size and still support lookup and update very fast.

Our current update routine is mostly optimized for BGP
workloads. Our plan is to adopt the scheme from [14] to
generalize to arbitrary use cases. Furthermore, the equal
weight setting heuristic (16) is completely intuitive. It would
be interesting to theoretically confirm this setting in the
future, find better ones, or even incorporate weights into a
Lagrangian framework to solve the problem optimally. On
a longer term, we see intriguing opportunities to extend our
work to compressing general forwarding tables [48] and packet
classifiers [49], [50], virtual routers’ shared forwarding tables
[12], [47], or general labeled trees [34].
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[14] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger, “Com-

pressing IP forwarding tables: towards entropy bounds and beyond,” in
ACM SIGCOMM 2013, 2013, pp. 111–122.

[15] ——, “Compressing IP forwarding tables: towards entropy bounds and
beyond,” Technical Report, 2014, available online: http://arxiv.org/abs/
1402.1194.

[16] V. Srinivasan and G. Varghese, “Faster IP lookups using controlled prefix
expansion,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 1, pp. 1–10,
1998.

[17] I. Ioannidis and A. Grama, “Level compressed DAGs for lookup tables,”
Comput. Netw., vol. 49, no. 2, pp. 147–160, 2005.

[18] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: hard-
ware/software IP lookups with incremental updates,” SIGCOMM Com-

put. Commun. Rev., vol. 34, no. 2, pp. 97–122, 2004.
[19] R. Draves, C. King, S. Venkatachary, and B. Zill, “Constructing optimal

IP routing tables,” in IEEE INFOCOM, 1999.
[20] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang,

and P. Francis, “SMALTA: practical and near-optimal FIB aggregation,”
in ACM CoNEXT, 2011, pp. 1–12.

[21] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high
speed IP routing lookups,” in ACM SIGCOMM, 1997, pp. 25–36.

[22] J. Hasan and T. N. Vijaykumar, “Dynamic pipelining: making IP-lookup
truly scalable,” in ACM SIGCOMM, 2005, pp. 205–216.

[23] A. McAuley and P. Francis, “Fast routing table lookup using CAMs,”
in IEEE INFOCOM, 1993, pp. 1382–1391.

[24] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using Bloom filters,” in ACM SIGCOMM, 2003, pp. 201–212.

[25] P. Gupta, B. Prabhakar, and S. P. Boyd, “Near optimal routing lookups
with bounded worst case performance,” in IEEE INFOCOM, 2000, pp.
1184–1192.

[26] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
accelerated software router,” in ACM SIGCOMM, 2010, pp. 195–206.

[27] M. Zec, L. Rizzo, and M. Mikuc, “DXR: towards a billion routing
lookups per second in software,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 5, pp. 29–36, 2012.

[28] Y. Liu, S. O. Amin, and L. Wang, “Efficient FIB caching using minimal
non-overlapping prefixes,” SIGCOMM Comput. Commun. Rev., vol. 43,
no. 1, pp. 14–21, Jan. 2012.

[29] W. Wu, Packet Forwarding Technologies. Auerbach, 2008.
[30] T. M. Cover and J. A. Thomas, Elements of information theory. Wiley-

Interscience, 1991.
[31] I. Ioannidis, “Algorithms and data structures for IP lookups,” Ph.D. dis-

sertation, Purdue University, Department of Computer Sciences, 2005.
[32] EZChip, “NP-4: 100-Gigabit Network Processor for Carrier Eth-

ernet Applications,” http://www.ezchip.com/Images/pdf/NP-4_Short_
Brief_online.pdf, 2011.

[33] D. E. Knuth, The Art of Computer Programming, Volume III: Sorting

and Searching. Addison-Wesley, 1973.
[34] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan, “Compress-

ing and indexing labeled trees, with applications,” J. ACM, vol. 57, no. 1,
pp. 1–33, 2009.

[35] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318,
1992.

[36] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM

Comput. Surv., vol. 39, no. 1, 2007.
[37] A. Andersson and S. Nilsson, “Faster searching in tries and quadtrees –

An analysis of level compression,” in Algorithms–ESA’94, ser. Lecture
Notes in Computer Science. Springer, 1994, vol. 855, pp. 82–93.

[38] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” in ACM SIGCOMM, 1997, pp. 3–14.

[39] J. Choi, J. H. Park, P. chun Cheng, D. Kim, and L. Zhang, “Under-
standing BGP next-hop diversity,” in INFOCOM Workshops, 2011, pp.
846–851.

[40] S. Sahni and K. S. Kim, “Efficient construction of multibit tries for IP
lookup,” IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 650–662, 2003.



p
i
v,e q

i
v,e

r
i
v,e

(a)

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

∗

C1
v,e1

C2
v,e1

C1
v,e2

C2
v,e2

C1
v,e3

C2
v,e3

(b)

∗ ∗

Ci
u,e

Ci
v,e

(c)

Fig. 7: Illustration for the proof of Theorem 1: (a) link-gadget Ci
v,e for node v, incident edge e, and i ∈ {1, 2}; (b) node
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(∗) mark unique, unshareable labels.
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APPENDIX

Proof of Theorem 1: MINLEVCOMPDAG(k) is trivially in
NP, as for any given trie (T, l) and a witness (D, f) we can
verify in time proportional to the number of nodes in T that
(T, l) ∼ (D, f) and the number of pointers M(D, f) is at most
k. To show that it is also NP-hard, we give a Karp-reduction
from the Maximal Independent Set on Cubic Graphs problem
(MAXINDSET3, [41]) to MINLEVCOMPDAG.

Definition 3. MAXINDSET3(l): given a 3-regular graph

G(V,E) and an integer l, is there a set V ′ ⊂ V with |V ′| ≤ l
so that no two nodes in V ′ are connected by an edge in E?

Given a connected 3-regular graph G(V,E), n = |V |, and
integer l, we construct a proper, binary, leaf-labeled trie (T, l)
and an integer k, so that there is an independent set of size l in
G(V,E) if and only if MINLEVCOMPDAG on (T, l) can be
solved with at most k pointers. Let E(v) denote set of (three)
edges incident to node v ∈ V . We use the following gadgets.

• For each v ∈ V , e = (v, u) ∈ E, i ∈ {1, 2}, the link-

gadget Ci
v,e is a proper trie of 3 nodes (see Fig. 7a). Let

the root be riv,e and label the left child with the unique
label piv,e and the right child with qiv,e. Note that, in our
construction, only link-gadgets are shareable in (T, l).

• For each v ∈ V , the node-gadget Nv is a binary trie
of depth 4, with 10 unshareable leaves on the left and

4 unshareable leaves plus 6 link-gadgets Ci
v,ej

: ej ∈
E(v), i ∈ {1, 2} on the right (Fig. 7b).

• Finally, for each e = (u, v) ∈ E and i ∈ {1, 2}, the edge-

gadget Qi
e is a binary trie containing the link-gadgets

Ci
u,e at depth 2 and Ci

v,e at depth 1 (Fig. 7c).

Collect all gadgets into a labeled forest and connect this
into a rooted binary trie (T, l). The details of this construction
are uninteresting here, it is enough to know that we can do
this so that the following observations (in particular, (i)) hold.

Observation 2. For any (D, f) ∼ (T, l), there is a prefix DAG

(D′, f ′) ∼ (D, f) with M(D′, f ′) ≤ M(D, f) so that

(i) the root of the node- and edge gadgets appear at the first

level of (D′, f ′) and this level uses R = O(n) pointers;

(ii) for each v ∈ V , either all Ci
v,ej

: ej ∈ E(v), i ∈ {1, 2}
are shared and M(Nv) = 30, or otherwise M(Nv) = 32;

(iii) for each e ∈ E, i ∈ {1, 2}, M(Qi
e) = 8; and so

(iv) {v ∈ V : M(Nv) = 30} is an independent set in G.

To see (ii), observe that if all link-gadgets in Nv are shared
then we can level-compress the left sub-trie to 16 pointers and
the right one to 8+4 pointers (8 for levels 2–4 contracted and
4 for the uniquely labeled nodes at left, using the convention
that whenever a link-gadget is shared we count it to the
corresponding edge-gadget) and 2 additional pointers from the
root, otherwise we can compress Nv to a single level with 32
pointers. Regarding (iii), if for Qi

e : e = (u, v) both Ci
u,e

and Ci
v,e are shared then we need to leave Qi

e as binary (so
M(Qi

e) = 10), otherwise we can level-compress the first two
levels (which sets Ci

u,e shareable) or the last two levels (which
sets Ci

v,e shareable) or all levels (which sets neither shareable),
each option needing 8 pointers. In addition, if Qi

e holds 10
pointers then both Ci

u,e and Ci
v,e are shared, removing one

of which we could compress Qi
e down to 8 pointers losing at

most 2 pointers at one of the node-gadgets Nu or Nv (by (ii)).
It follows that the nodes v ∈ V for which the node-gadget Nv

is compressed to 30 pointers in fact make up an independent
set in G (item (iv)), which concludes the proof as follows.

Corollary 3. There is an independent set V ′ in G with |V ′| ≥
l, if and only if there is a prefix DAG (D, f) ∼ (T, l) with

at most k = R +
∑

v∈V M(Nv) +
∑2

i=1

∑

e∈E M(Qi
e) =

R+30l+32(n− l)+ 3n/2(2 ∗ 8) = R+56n− 2l pointers. �


