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Abstract: We are dealing with the classical problem of determining the minimum size of
a separating system consisting of sets of size k. The problem was raised by Rényi, the first
and most important results are due to Katona; Wegener, Luzgin and Ahlswede also proved
important bounds. We give a simple, short proof of a strengthening of Katona’s main theorem
determining the minimum size of a separating system of k-sets.
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1 Introduction and results

A set system is said to be a separating system if any two elements of the underlying set can be separated
by some set of the system. More formally:

Definition 1 Let H be a finite set. The system A ⊆ 2H is a separating system if for any x, y ∈ H, x 6=
y : ∃ S ∈ A, such that x ∈ S, y 6∈ S or x 6∈ S, y ∈ S.

Separating systems were introduced by Alfréd Rényi [6] in 1961 concerning information-theoretic
problems. The problem of finding the minimum size of a separating system containing sets of size k was
also raised by Rényi.

Definition 2 Let m and k be positive integers, such that k < m
2 . Let us denote the smallest size of

a separating system A ⊆ 2[m] of sets of size exactly k, size at most k, and average size at most k, by
n(m, k), n′(m, k), and n∗(m, k), respectively.

It is obvious that

Claim 3 n∗(m, k) ≤ n′(m, k) ≤ n(m, k).
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Rényi’s problem was to determine the number n(m, k). In 1966 Katona, using the main theorem in [2]
showed

Theorem 4 (Katona) For k < m
2 , n

′(m, k) = n(m, k).

In 2008 Ahlswede showed [1, Appendix]

Theorem 5 (Ahlswede) For k < m
2 , n

∗(m, k) = n(m, k).

We give a short, simple proof of both theorems in Section 2. Katona’s main theorem in [2] is the
following.

Theorem 6 (Katona) For k < m
2 , n(m, k) is equal to the least number n, for which there exists a system

of non-negative integers s0, s1, . . . , sn satisfying the following three conditions:

n
∑

i=0

i · si = kn, (1)

n
∑

i=0

si = m, (2)

si ≤

(

n

i

)

i = 0, 1, . . . , n. (3)

We prove the following strengthening of this theorem.

Theorem 7 For k < m
2 , n(m, k) is equal to the least number n, for which there exist natural numbers

j ≤ n− 1 and a <
(

n

j+1

)

, such that

j
∑

i=0

i ·

(

n

i

)

+ a(j + 1) ≤ kn, (4)

j
∑

i=0

(

n

i

)

+ a = m. (5)

Katona mentions [2] that though Theorem 6 determines n(m, k) implicitly, it cannot be used to
compute the value of n(m, k). On the other hand, using Theorem 7 it is easy to compute n(m, k): first
fix n and k and find the maximum m satisfying (4) and (5). Let this maximum be M(n, k). Condition
(4) is equivalent to

j−1
∑

i=0

(

n− 1

i

)

+
a(j + 1)

n
≤ k,

where a(j+1)
n

<
(

n−1
j

)

, thus the maximum possible values for j and a are easy to find. Therefore, by (5)

we have M(n, k). Now n(m, k) is the smallest n, for which m ≤ M(n, k). In Section 2 we will also see
that not just the size of a minimum separating system of k-sets is easy to determine but it is also easy
to give such a system.

It is worth mentioning that a closed formula for n(m, k) is not known. The best known lower bound
(based on a nice entropy approach) is due to Katona [2], while the best known upper bound is due to
Wegener [7] and Luzgin [4]. In 2002 Katona showed [3] that Theorem 6 can be used to obtain really
good approximate solutions, while in 2008 Ahlswede proved [1] that the entropy type bound of Katona
is asymptotically tight.



2 Proofs

Let H ⊆ 2[m] be a set system of size n and consider any linear order of its sets. The incidence matrix
of H is the 0–1 matrix M(H) = (mij)n,m, where mij is 1 if the ith set of H contains the element j and
0 otherwise. Henceforth, all matrices in this paper are binary. A matrix will be called simple, if it does
not contain identical columns. The weight of a row or a column A is defined as the number of 1’s in A

and is denoted by w(A). We use the following two notions of Katona [2]: a matrix is called admissible if
the weights of any two rows are the same, and a matrix is called quasi-admissible if the weights of any
two rows differ by at most one.

It is easy to see [5] that a set system H is separating if and only if M(H) is a simple matrix and
therefore n(m, k) (n′(m, k)) is the smallest number n, such that an n×m simple matrix with row weights
exactly (at most) k exists.

First we give a short proof of Theorem 4.

Proof of Theorem 4: By Claim 3 we only have to prove n(m, k) ≤ n′(m, k). For this, it suffices to
show that if there exists an n × m simple matrix M with row weights at most k, then there exists an
n × m simple matrix M ′, where every row has weight k. Let M be an n × m simple matrix M with
row weights at most k, such that the number of 1’s in M is maximum. We show that every row of M
has weight k. Assume to the contrary that a row A of M exists, such that w(A) < k. For the sake of
convenience let us assume that A is the first row of M . Since w(A) < k < m

2 , the number of 0’s is greater
than the number of 1’s in A. Therefore, there exists a column C of M , such that the first entry of C is 0
and M does not contain the column which differs from C only in the first entry. Thus if we change the
first entry of column C to 1, we obtain a simple matrix M ′ with row weigths at most k, such that M ′

contains more 1’s than M , a contradiction. �

Let r(m, k) be the least number n, for which there exist numbers j and a, such that j ≤ n − 1,
0 ≤ a <

(

n

j+1

)

and equations (4) and (5) hold.

Lemma 8 n∗(m, k) = r(m, k).

Proof: First we show that n∗(m, k) ≤ r(m, k). Let n = r(m, k), and j, a the numbers for which (4) and
(5) hold. Let us consider a matrix M consisting of every column of length n and weight at most j and a

different columns of length n and weight j + 1. M is obviously simple and contains n rows, furthermore
by (4) and (5) M contains m columns and at most kn 1’s. The existence of such a matrix proves the
inequality. In order to prove r(m, k) ≤ n∗(m, k) let n = n∗(m, k) and let M be a simple n×m matrix
containing at most kn 1’s, such that the number of 1’s is minimum. We show that for some j < n every
column of M has weight at most j + 1 and every column of weight at most j appears in M . Now if we
let a be the number of columns of weight j +1 then it is easy to check that for j and a the equations (4)
and (5) hold, from which the inequality follows. For this, we have to show that if a column A of length
n appears in M , then every column B of length n and weight less than w(A) also appears in M . This is
easy to see: if w(B) < w(A) and B is not a column of M , then by deleting A from M and adding B to
M we would obtain an n×m simple matrix containing less 1’s than M , a contradiction. �

To prove Theorems 5 and 7 we need a lemma of Katona, which appears as Step C in the proof of
Theorem 6 in [2].

Lemma 9 (Katona) Let n and b be positive integers, b ≤ n. Let furthermore c be a positive integer
satisfying c ≤

(

n

b

)

. Then there exists an n× c quasi-admissible matrix M(n, b, c), where every column has
weight exactly b.

Now we prove Theorem 5, from which Theorem 7 (by Lemma 8) immediately follows.
Proof of Theorem 5: By Theorem 4 and Claim 3 it suffices to show that n′(m, k) ≤ n∗(m, k). For
this, it is enough to show that if there exists an n×m simple matrix M containing at most kn 1’s, then
there exists an n×m simple matrix M ′, where every row has weight at most k. Let M be a simple n×m



matrix containing at most kn 1’s, such that the number of 1’s is minimum. We have seen in the previous
proof that for some j < n every column of M has weight at most j + 1 and every column of weight at
most j appears in M . Now let us delete the columns of weight j + 1 from M and add the columns of
M(n, j + 1,m −

∑j

i=0

(

n

i

)

) to M . The matrix M ′ obtained in this way is obviously an n × m simple,
quasi-admissible matrix containing the same number of 1’s as M , which is at most kn. Therefore (since
M ′ is quasi-admissible), every row of M ′ has weight at most k, which finishes the proof. �
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