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Abstract – This paper focuses on the problem of dynamic 
survivable routing for segment shared protection (SSP) in mesh 
communication networks provisioning bandwidth guaranteed 
tunnels. With SSP, a connection is settled by concatenating a 
series of protection domains, each of which contains a working and 
protection segment-pair behaving as a self-healing unit for 
performing local restoration whenever the working segment is 
subject to any unexpected interruption. We first discuss the 
advantages of using SSP – the ability of shortening the restoration 
time as well as achieving a higher throughput by saving spare 
capacity required for 100% restorability; then the survivable 
routing problem is formulated into an Integer Linear 
Programming (ILP), where the switching/merging node-pair of 
each protection domain along with the corresponding least-cost 
working and protection segment-pair can be jointly determined 
for a dynamically arrived connection request. A novel approach of 
arc-reversal transformation is devised to deal with the situation 
that the working segments of two neighbour protection domains 
may overlap with each other by more than a single node. Due to a 
very high computation complexity induced in solving the ILP, a 
novel heuristic algorithm is proposed, named Cascaded Diverse 
Routing (CDR), to allocate protection domains for a connection 
request by performing diverse routing across a set of pre-defined 
candidate switching/merging node-pairs. Experiments are 
conducted on five two-connected network topologies to verify the 
ILP and the CDR algorithm. We first find out the best diameter of 
protection domains for the CDR scheme in each network topology. 
Using the results of best diameters, CDR is compared with two 
reported schemes, namely PROMISE and OPDA. We 
demonstrate in the simulation results that the path shared 
protection schemes are outperformed by the SSP schemes in terms 
of blocking probability under all possible arrangements in the 
experiment, and that CDR yields better performance than 
PROMISE and OPDA due to the extra efforts in manipulating the 
location of working segments at the expense of longer 
computation time.  
Keywords: segment shared protection (SSP), survivable routing, 
working and protection paths, integer linear programming, 
Shared Risk Link Group (SRLG). 

I. INTRODUCTION 

Survivability has emerged as one of the most important 
issues in the design of modern communications networks with 
bandwidth guaranteed tunnels. Survivable routing is 
recognized as one of the best strategies to equip the networks 

with service continuity by pre-planning link-disjoint or 
node-disjoint protection paths for working capacity. With a 
diversely routed working-protection path-pair, once the 
working path is subject to any unexpected interruption, the 
corresponding service can be restored by switching over the 
working traffic to the protection path such that the failure is 
circumvented. With the emergence of some commercially 
applications and delay-sensitive services addressing stringent 
requirements on data integrity and service continuity, the 
design of survivable routing algorithms should not only be both 
capacity- and computation-efficient, but also minimize the 
possible restoration time for a specific connection, such that 
the maximum benefits can be gained in the operation of carrier 
networks.  

Segment shared protection (SSP) is one of the best 
approaches to meet the above design requirements, where a 
connection is provisioned by concatenating a series of 
protection domains, each of which contains a working and 
protection segment-pair behaving as a self-healing unit for 
performing local restoration when the working segment is 
subject to any unexpected interruption. As shown in Fig. 1, 
when the working path segment of protection domain 2 is 
impaired unexpectedly (e.g., either link E-F, F-G, G-H, or H-I 
is cut), the restoration is performed locally within protection 
domain 2 such that the affected flow switches over to the 
backup segment at node E (called switching node of the 
protection domain) and merges back to the original working 
path at node J (called merging node of the protection domain). 
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Fig. 1. An illustration of SSP. 

Comparing with its counterpart – path shared protection 
[10-18], segment shared protection has been reported to 
achieve a better throughput by maximizing the extent of spare 
capacity resource sharing [2,7,21]. It can also impose a 
stringent limitation on the restoration time for a specific 
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application by constraining the length/hop-count of the 
working and protection segment in each protection domain. 
The major difficulties of implementing SSP lie in the 
dependency between the working and spare capacities as well 
as the exponentially enlarged design space with the network 
size in identifying a set of switching/merging node-pairs to 
form protection domains for a connection request. Thus, most 
previous studies focus on heuristic approaches to solve the 
problem. In [2], a framework known as Short Leap Shared 
Protection (SLSP) is proposed, which implements SSP by 
pre-assigning a series of switching/merging node-pairs along a 
given working path. The capacity-efficiency with SLSP is 
expected to be further improved if the working and backup 
segments can be jointly determined. In [3], an algorithm is 
developed to find the working path first followed by its backup 
path segments. The study is characterized by the fact that the 
spare capacity sharing is not considered until the physical 
routes of the backup path segments are defined. In [4] and [5], 
the authors propose two similar dynamic algorithms to 
switchover working traffic for each link from its immediate 
upstream node and merge back to the original path at any of 
the downstream nodes. Both studies do not impose any 
limitation on the lengths of the backup paths, and may not be 
able to guarantee the restoration time when a failure occurs. 
Note that the unnecessarily lengthy backup paths have been 
witnessed to impair the overall performance even if they share 
spare capacity with the other backup paths [10,12].  

The study of [6] provides an algorithm for computing QoS 
paths with restoration, which is characterized by considering 
multiple link metrics in searching the working and protection 
segments. This study does not consider resource sharing and 
adopt exhaustive searching for those protection segments for 
the working path. The study in [7] proposes an Integer Linear 
Programming (ILP) formulation for SSP to determine the 
switching/merging node-pairs along the working path given in 
advance. The algorithm is characterized by the efforts of 
inspecting all possible number of protection domains for a 
connection request and all possible combinations of allocation 
under each given number of protection domains. Since the 
formulation needs to have the working path first before the 
protection segments can be derived, the solution may be far 
from the optimal if the working path is not well selected. The 
study in [8] takes a very similar approach to that in [7]. The 
algorithm finds a protection segment for each link along the 
working path given in advance, in which “backtrack” by D 
hops is allowed, where D can be an arbitrary positive integer or 
infinity. In the study of [9], a heuristic algorithm is proposed 
for segment shared protection, called Optimal Protection 
Domain Allocation (OPDA), where a graph transformation 
algorithm, called transferred graph of cycles, is devised. Since 
the algorithm needs to enumerate and align simple cycles in the 

network topology as candidate cycles for a given working path, 
it may impair the capacity efficiency if only a limited number 
of cycles can be inspected within the allowed computation time. 
It is notable that all of the above schemes deal with work and 
protection paths separately, which are also known as Active 
Path First (APF) [10].  

To jointly determine a working and protection path-pair, 
some studies focus on developing a programming-based 
solution [4,11-13]. One of the key issues in formulating the 
problem under the complete routing information scenario [4] 
(i.e., the algorithm is aware of all the working and protection 
paths along each link) is that the routing of the working path 
and the dependency between working and spare capacity along 
each link must be handled in a single step. Besides, the 
consideration of multiple states for the protection path to 
consume spare capacity along each link may easily leave the 
formulation nonlinear [4]. Therefore, to our best knowledge a 
linear programming-based solution that can optimally solve the 
least-cost working and shared protection path-pair according to 
the current link-state has never been reported before, let alone 
the case of segment shared protection, which is considered 
much more complicated.  

The study in [4] provides an Integer Programming (InP) in 
the complete routing information scenario for solving the 
end-to-end working and shared protection path-pair according 
to the current link-state. The formulation is nonetheless 
nonlinear and cannot be solved by most of the commercially 
available LP solvers. The study in [11] provides a 
heuristic-based ILP formulation to deal with the problem, 
where two scaling parameters are introduced to avoid the 
nonlinearity possibly induced when multiple states of spare 
capacity along each link are considered. The study in [12,13] 
focuses on the complete routing information case and provides 
an ILP formulation that can solve the problem with two states 
of spare capacity along each link for the protection path – 
either sharable or non-sharable, where the link bandwidth 
constraint can never be addressed. It is clear that an ILP 
formulation for segment shared protection considering all 
possible states of spare capacity consumption along each link 
in the complete routing information scenario has never been 
seen before. 

This paper contributes in formulating the problem into an ILP 
working under the complete routing information scenario, in 
which the location of the switching/merging nodes and the 
corresponding working and protection segment-pairs for a 
connection request can be derived in a single step according to 
the current link-state. This is the first linear formulation that 
can handle the dependency between working and spare 
capacity for segment shared protection, where a novel method 
of arc-reversal transformation is devised to deal with the 
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situation that working segments of two neighbour protection 
domains may overlap with each other by more than a single 
node (as shown in Fig. 1). To avoid the nonlinearity possibly 
incurred when dealing with the multiple states for a protection 
segment to take spare capacity, a graph transformation 
technique is devised to facilitate the formulation.  

Although the ILP can yield the least-cost (or optimal) 
working and protection segment-pairs for a connection request, 
the solving of the ILP nonetheless takes an intolerably large 
amount of computation time. Therefore, this paper also 
introduces a novel heuristic algorithm for solving the problem, 
called Cascaded Diverse Routing (CDR), aiming to trade the 
optimality in performance with the computation complexity. 
The basic idea of CDR is to pre-define a set of candidate 
switching/merging node-pairs, between each of which a 
diverse routing algorithm, called Iterative Two-Step-Approach 
(ITSA) [12], is conducted to find the corresponding working 
and protection segment pair. We compare CDR with the 
heuristic approaches reported in [7] and [9] through simulation, 
namely PROMISE and OPDA, and examine the offset of 
optimality in each case referring to the solutions from the ILP 
formulation. 

This paper is organized as follows. In Section II, an 
overview on segment shared protection and spare capacity 
resource sharing is conducted, where the cost functions for 
both working and protection segments are defined. In Section 
III, the ILP formulation for solving the segment shared 
protection problem is presented. Section IV presents the 
heuristic algorithm, Cascaded Diverse Routing (CDR). In 
Section V, CDR is compared with two other reported schemes 
through simulation and is verified by the results from the ILP 
solution. Section VI concludes this paper. 

II PROBLEM DEFINITION 
A Concepts of Shared Risk Link Group (SRLG)  

Shared Risk Link Group (SRLG) is defined as a group of 
network elements (i.e., either links, nodes, physical devices, 
software/protocol identities, or a mix of which, etc) subject to 
the same risk of single failure. In practical cases an SRLG may 
contain multiple seemingly unrelated and arbitrarily selected 
links/nodes. We define that a working path is involved in an 
SRLG if it traverses through any network element that belongs 
to the SRLG. A path may be involved in multiple SRLG’s. A 
working path is said to be SRLG-disjoint with its protection 
path if the two paths are not involved in any common SRLG. In 
this study, the SRLG-disjointedness for a working and 
protection path-pair is the major effort of achieving 100% 
restorability for the working data flows under the single failure 
scenario.  

Without loss of generality, this study focuses on the case 

that each arc in the network topology is an SRLG. Under such a 
premise, it is easy to see that a working path traversing through 
H hops will be involved in no more than H different SRLG’s. 
We raise the assumption that the probability of each physical 
conduit to be subject to a failure is independent. In other words, 
to achieve 100% restorability, it is sufficient and necessary that 
every link traversed by the working path is protected by at least 
one link-disjoint protection path. 

In this study, all the working paths are assumed to be 
loop-less. A working path may contain multiple protection 
domains, each of which has a protection path. The spare 
capacity taken by backup path segments is called spare 
channels that are only reserved but not configured during the 
normal operation. Therefore, the spare channels can also be 
used by some best-effort traffic that can tolerate a service 
interruption. In the event that a failure occurs that interrupts a 
working path (such as a fibre-cut or loss of signal due to the 
failure of any network element), the switching fabric structures 
in the nodes along the corresponding protection path are 
configured by prioritized signalling followed by traffic 
switchover to recover the original service supported by the 
working path. Therefore, the protection paths of different 
working paths can reserve the same spare channels if the 
working paths are not involved in a common SRLG, and are 
considered to share the same risk of single failure. In this study, 
two working paths share the same risk of single failure if and 
only if they take any common arc in the network. In other 
words, whether or not two protection paths can share a spare 
channel depends on the physical location of their working 
lightpaths. The dependency is the reason for the existence of 
SRLG constraint [1]. A simple example is shown in Fig. 2. W1 
and P1 form a working and protection path-pair. The protection 
path of W2 (any other working path) should exclude the 
possibility of using any of the spare channels taken by P1 
because W2 traverses link A-B, which shares the same risk of a 
single failure with W1.  

1                                                                                                                 2

W2

P1

W1 A B

 
Fig. 2. An example to illustrate the SRLG constraint. 

For language precision, in the following context a “link” is 
always directional while an “arc” is un-directional composed 
of two directional links of the same ending nodes. We assume 
that a link is physically bundled and is comprised of several 
independent communication channels that provision data flows. 
Therefore, a failure defined in this paper is limited to a link cut 
that is possibly caused by a rodent bite or careless 
construction/maintenance efforts. We take an assumption of 
single failure scenario, where the algorithm only deal with the 
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situation that a single link in the total network is unexpectedly 
interrupted at a moment.  
B An Overview on SSP 

The advantage of using SSP compared with path shared 
protection lie in not only the reduction of restoration time, but 
also the achievement of larger degree of sharing. The following 
is an example to show the resultant capacity saving and 
reduced restoration time in using SSP compared with path 
shared protection. In Fig. 3, the network contains working path 
W1 (A-B-C-D-E-F-G) and its link-disjoint protection path 
along (A-H-C-J-E-K-G). Let W2 (C-D-E) is being allocated 
with its protection path. In case path shared protection is 
adopted, as shown in Fig. 3(a), the spare capacity taken by the 
protection path of W1 can never be shared by the protection 
path of W2 since both W1 and W2 are involved in a common 
SRLG. For SSP shown in Fig. 3(b), on the other hand, W1 is 
segmented into multiple segments, each of which is assigned 
with a switching/merging node-pair and a protection segment. 
For example, for the second protection domain, each switching 
and merging node is C and E, respectively. Therefore, the 
protection path of W2 can share the spare capacity taken by the 
protection segments in the first and the third protection domain. 
In this case, the number of working paths in an SRLG is 
reduced such that the total amount of non-sharable spare 
capacity in the network for a specific working segment is 
reduced, which yields better throughput. Because the 
restoration can be performed locally in each protection domain, 
the propagation time of signalling messages can be largely 
reduced. 
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Fig. 3. A comparison between the path shared protection and 

SSP; (a) path shared protection; (b) SSP with 
switching-merging pairs (A, C), (C, E), and (E, G) for the first, 

second, and third protection domain, respectively.  

In this study, the link-based shared protection [2] is taken as 
a special case of SSP, in which every link along the working 
path behaves as a working path segment with a 
switching/merging node-pair for the corresponding protection 
segment. The overhead in using segment shared protection 

compared with path shared protection is as below. Firstly, 
larger computation complexity is taken to solve the problem 
due to the efforts in determining the switching/merging 
node-pair of each protection domain. Secondly, a new suite of 
signalling mechanism must be defined.  

The signalling effort with SSP is briefly described as follows. 
After a fault on the working path occurs, it is localized 
immediately by the downstream neighbour node, which 
notifies the switching node of the protection domain to activate 
a traffic switchover. For the example in Fig. 1, a fault on link 
C-D is localized by its immediate downstream node D. A fault 
on link E-F is localized by the immediate downstream node F. 
In the former case, node D sends notification indicator signal 
(NIS) to notify node A and F that a fault occurred in their 
protection domain. In the latter case, node F sends an NIS to 
node E and J for a fault notification. In the case that a failure 
occurs to the link or node covered by two neighbour protection 
domains (e.g., link E-F), the protection domain close to the 
source node is in charge of the failure. After receiving the NIS, 
the merging node (i.e. A or E) immediately sends a wake-up 
packet to activate the configuration of switching fabric in each 
node along the corresponding backup segment of the 
corresponding protection domain, and then the traffic can be 
switched over to the protection path. 

With the above signalling mechanism, it is clear that every 
node must additionally keep track of the switching node of 
each working path traversing through the node in the 
corresponding protection domain. Fault localization [22] is 
necessary such that the downstream node of a failure can 
activate the failure recovery process, in which a higher 
requirement on hardware responsiveness and control 
complexity is needed. The largely increased computation 
complexity in using SSP compared with path shared protection 
is also a non-trivial problem that should be solved before the 
scheme can be practically applied. 
C Definition of Cost Functions 

This section defines cost function and the link-state for 
solving a protection segment of a working path segment (or 
termed spare link-state). Given a network G(N,E) with N and E 
being the set of nodes and directional links, respectively. The 
capacity along link j, Ej ∈∀ , can be categorized into the 
following three types: 
1) Free capacity (denoted as fj), which is the link capacity that 

can be reserved as either working or spare capacity. 
2) Spare capacity (denoted as vj), which is the link capacity 

reserved by some backup segment(s).  
3) Working capacity, which is the link capacity already taken 

by some working path, and cannot be taken for any use until 
the corresponding working path is torn down. 

The cost function for finding working path segment in the 
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k-th protection domain (denoted as Wk) with bandwidth b(W) is 
as follows: 

   if link  is not reservable
( )   otherwise        j

j

j
cw

b W c ε
∞⎧

= ⎨ ⋅ +⎩
                   (1) 

where cj is the cost for each unit of bandwidth taken by a 
working path along link j, and ε  is a small number defined as 

Ec jEba /)(min ),( ∈=ε  in this study. The link cost cj is 
custom-designed, and can either be a constant (e.g., simply the 
bandwidth demand of the connection request for each hop), or 
take dynamic network traffic into consideration (e.g., the 
maximum reservable bandwidth along link j). In this study, the 
fact that link j is not reservable by Wk can only be due to b(W) 
> fj , where fj is the free capacity along link j (as illustrated in 
Fig. 4). The total cost of the working path is 

j W ( ( ) j )b W c ε
∈

. The purpose of additionally imposing the 
small number

⋅ +∑
ε  in the cost function is to match the cost of 

backup segments, which will be defined later. 

Fig. 4. An illustration of categories of capacity along link 
j. 

For solving the backup segment of Wk, we need first to 
define the corresponding spare link-state and cost function. 
With the presence of Wk, the spare capacity along link j can be 
further categorized into the following two types:  
1) Sharable spare capacity (denoted as ), which is the 

link capacity that has been reserved by some other backup 
segment(s), and is sharable to the backup segment of W

kW
jsh

k. 
2) Non-sharable spare capacity (denoted as kW

jsb ), which is 
the link capacity that has been reserved by some other 
protection paths, and is not sharable to the protection path of 
W due to the SRLG constraint. Note that k kW W

j j jv sb sh= + , 
which is the total spare capacity along link j. 

The protection path may traverse through link j in any one of 
the following three states: (1) the case where the link has 
sufficient sharable spare capacity (i.e., ( )kW

jsh b W≥ ), in which 
the backup segment can take this link with the smallest cost 
(denoted as ε  in this study); (2) the case where 

( )kW
j j j

kWf sh b W sh+ ≥ > , and the backup segment must partly 
(or totally) take free capacity along this link with an extra cost. 

In this case the spare link-state is ( ) kW
j jb W sr c ε⋅ ⋅ + , where 

kW
jsr  is a [0,1] scaling parameter determined by the location of 

Wk and will be defined later. (3) The link does not have 
sufficient sharable spare capacity and free capacity (i.e., 

( )kW
j jf sh b W+ < ), in which the backup segment cannot 

traverse through this link by any means. In this case the cost is 
∞ . Due to the dependency between the working and spare 
capacity in the network, the parameters kW

jsr , , and kW
jsh

kW
jsb cannot be defined until the presence of W.  
In this study, kW

jsr  is defined as 1 / (kW
j )sh b W−  for any 

link Ej ∈ . It is clear that kW
jsr is 1 if there is not any sharable 

spare capacity available along link j and is approaching to 0 if 
is close to b(W). In the former case (i.e., the case of kW

jsh
1kW

jsr = ), the cost for the backup segment to take this link is 
( ) jb W c ε⋅ + , which is the same as that for the working path 

since all the reserved bandwidth has to be from the free 
capacity region as shown in Fig. 4. The spare link-state for the 
backup segment of Wk can be expressed as: 

( )    if ( )
          if ( )  for ,   

                  if ( ) 

k k k

k k

k

W W W
j j j j j

W W
j j

W
j j

b W c sr sh f b W sh
cp sh b W j E j W

sh f b W

ε
ε

⎧ ⋅ ⋅ + + ≥ >
⎪= ≥⎨
⎪ ∞ + <⎩

k∈ ∉

b W c sr

(2) 

Fig. 5 shows the three situations defined in Eq. (2). In Fig. 
5(b) and Fig. 5(c), the backup segment of Wk may partly take 
the free capacity region and the sharable spare capacity region; 
therefore, the link cost is 

j j( ) kW ε⋅ ⋅ + , which is shown in 
the first condition in Eq. (2). In Fig. 5(a), the backup segment 
can have all b(W) in the sharable spare capacity region, 
therefore, the cost is ε , as shown in the second condition in 
Eq. (2). In Fig. 5(d), the link cost is infinity because the backup 
segment of Wk cannot be supported by the residual capacity of 
the link, which is shown in the third condition in Eq. (2). Note 
that the protection path is assumed to take sharable spare 
capacity along a link whenever there is any sharable spare 
capacity available. If there is not enough sharable spare 
capacity along this link to cover the total bandwidth demand 
for protecting Wk (i.e., b(W)), the backup segment takes free 
capacity after considering all the sharable spare capacity. 

Note that the adoption of the small constant ε  is to keep 
the continuity between the first and second condition in Eq. (2). 
In this case, the cost of link j is set to ε  as 

j ( )kWsh b W=  for 
both of the conditions. This is also the reason we impose ε  in 
the cost function for the working path shown in Eq. (1), in 
which the cost for the working and backup path segments to 
take free capacity can match each other. 

Our objective is to determine 
j

 in Eq. (2) – the spare 
link-state that defines the cost of the backup segment of W

kWcp

sh
k 

passing through link j, in which 
j

 is the only variable that 
must be figured out (or equivalently, 

kW

kW
jsb  since 

free capacity fj 

 
spare capacity vj 

working capacity 

qj 

link j 

with W

free capacity fj 

 sharable spare capacity shw
j 

working capacity qj 

link j 

non-sharable spare capacity sbw
j 
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k kW W
j j jv sb sh= + ). Note that and kW

jsh kW
jsb  are network-wide 

link-state specific to the presence of Wk. Any link kl W∈  is, in 
turn, traversed by a set of working path segments denoted as 

l
, which are also the working path segments currently 

involved in a common SRLG of link l with W
D

k.  

Fig. 5. The possible situations of a different cost function 

de ty 

The deriv  

fined in Eq. (2). fj denotes the amount of “free spare capaci
while kW

jsh for “sharable spare capacity” 

ation of kW
jsb  and kW

jsh  can also be expressed in a 
m  is aatrix form, which  grace xpression for determining 
spare capacity along each link by Y. Liu [15]. In this case, we 
define the working and protection path-link incidence matrices 
as kW

ful e

A  and kWB , in which kWA is a ED
kW ×  array 

cont g all th rking path seg volved in a 
common SRLG (i.e., take any common physical link) with W

ainin e wo ments that are in
k, 

while kWB  is an ED
kW ×  array containing all backup 

segments corresponding to the working paths segments in 
kWD  

Here we define ∪
kLWl

lkW DD
∈

= , where ∪ is a union operation.  

The spare p atrix forovision m r Wk is defined as 
kWTkWkW AB ⋅= )( , which is a C EE ×  matrix. Applying a 

AX operation upon each row of kWC  will yield a M E×1  
vector kWSB , which keeps the amount of non-sharable spare 
capacity along each link provided with the working path 
segment Wk. The E×1  vector kWSH , which keeps the 
amount of sharable spare capacity alo g each link provided 
with the working path segment W

n
k, can thus be derived by 

referring to the relationship k kW WSH V SB= − , where V is a 
E×1  vector recording the amount o  capacity along 

each link. 

III LINEAR F

f spare

ORMULATION FOR SEGMENT 

This section in  for the segment 
sh

Let the d E is the 
set of node pectively. 
Le

SHARED PROTECTION 

troduces a linear formulation
ared protection problem. Our approach is to find a path Q, 

called mass protection path, which is composed of all the 
backup segments and some links along the working path. A 
simple example is shown in Fig. 6, where Q is (s-a-b-c-e-d). 
The first protection domain is formed by the working and 
protection segments (s-c-b) and (s-a-b), respectively; while the 
second is formed by (c-b-d) and (c-e-d), respectively. The 

allowance of overlapping between the working segments of 
two neighbour protection domains is to explore the largest 
design space so as to guarantee the optimality of the derived 
solution. Note that Q may contain loops to reflect the fact that 
spare capacity sharing can happen between two protection 
segments of different protection domains. 

b(W) 
b(W) 

b(W) b(W) fj 

v

sh

 

Fig. 6. Design of mass protection path Q. 

network be denoted as G(N,E), where N an
s and directional links in the network, res

t the source and the destination of the upcoming connection 
request, W, be denoted as s and d. Three residual graphs are 
defined to facilitate the solving of this problem, each of which 
carries one or a few variables for the identification of the 
working and protection segment-pairs. The graph for solving 
the working segments is denoted as Gw(N,Ew) and is composed 
of links with ( )  for j wf b W j E≥ ∈ (x, lx and δx variables in the 
following formulas are assigned to this graph). The second 
residual graph , E is denoted as Gp(N p), which is to facilitate 
solving the protection segments. We need this graph to record 
the spare link-state because working and protection path take 
different suites of link-state with shared protection. This graph 
is composed of the links where the amount of free capacity fj 
plus that of the spare capacity vj is larger than or equal to b(W). 
(i.e., b(W) ≤ fj + vj for pEj ∈ ) (δy variable in the following 
formulas is assigned to this graph).  

The third residual gra ph G’
w in a reversed direction. 

Th

p(N, E’p) is composed of all the 
links in Ep along with the links of E

e inclusion of the links of Ew in a reverse direction into E’p 
is called arc-reversal transformation similar to the graph 
technique adopted in the Suurballe’s algorithm [19]. With 
G’p(N, E’p), we will be able to handle the reverse arcs caused 
by the overlapping between Q and W, such that the route of Q 
can be identified. The variables defined in this graph are y’ and 
ly’, which will be discussed in detailed later. It is clear that we 
have the following relationship: )( wpp EreversedEE ∪= . 
Therefore, E’p contains forward arcs denoted as ( )a b,

JJJG
, which 

are due to the links of Ep, as well as d 
as ( )a b

 the reversed ar denotecs 
,
HJJJ

, which are due to the reversal of link (a, n Eb) i w. In 

j 

j
W 

sh Wk = 0 

b(W) ≤ fj 

b(W)⋅c +ε 

sh Wk < b(W) 

sh k + f  ≥ b(W) 

 b(W) ⋅ sr Wk ⋅ce+ε 

b(W) > f + sh Wk 

 

∞ 

sh Wk ≥ b(W)  

 

ε 
cost:

(a (d

j

e
(c) 

j

W
j j

j

j  jj

) (b) ) 

s  d 

W 

Q   

b   c   

e   

a  
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the latter case, the reversed links direct from node b to node a 
for 

wE . The transformation yields a fact that if there is a 
bi-directional link between node a and b with the amount of 
free  larger than or equal to b(W), then G’

ba ∈,

capacity p will have 
four links between node a and b (i.e., a b,

JJJG
, a b,
HJJJ

; b a,
JJJG

, b a,
HJJJ

), 
in which two of them direct to node b (i.e., a

JJJG
; bb, a,
HJJJ

) and the 
other two direct to node a (i.e., b a,

JJJG
; 

J
). the ou f 

free capacity is less than b(W), and the am free plus 
spare capacity is larger than or equal to b(W) (i.e., 

( )j j jf b W f v< ≤ + ), then G’

a b,
HJJ

 If  am nt o
ount of 

transform

e implementation, 
an

p will have two directional links 
between a and b (i.e., a b,

JJJG
; b a,
JJJG

); otherwise, there is no link 
nd b in G’between node a a p. Please refer to Fig. 7 for an 

illustration of the graph ation. 
In the formulation, all the three graphs (Gw, Gp and G’p) are 

considered and indexed in an array during th
d we have to keep track of the index of each directional link 

on different graphs even though they are in the same direction 
and at the same physical location. For example, we must 
distinguish between ( ) pa b E′, ∈

JJJG
and , wa b E∈ , and 

between 'pa b E, ∈
HJJJ

and , pa b E∈ , and between , pa b E∈  and 
, wa b E∈  the array kee exes, in ping the ind  of the links. 
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Fig. 7. Graph transformations for the links in G, which yields 

the graphs Gw, Gp and G’p, respectively. 
 

formulation defined in 
ea

) ( , )
( ) ( )

w p

a b a b u v u v u v
E u v E

b W c x b W c r yε
∈ ∈

⋅ ⋅ + ⋅ ⋅ + ⋅∑ ∑

where ca,b is the cost per unit of working bandwid rve 
link (a,b), which is equivalent to cj in Eq. (1),

To introduce the target function of the proposed ILP
, the following two flow indicators are 

ch graph of Gw and G’p: xa,b is a binary variable with a size of 
|Ew| defined in graph Gw, while 

,u vy′  is an integer variable 
ranged [0..kmax] with a size of |E’p| defined in graph G’p, where 
kmax is the maximum number of protection domains that can be 
possibly handled in the problem. The target function is as 
follows: 

( )
( ,

Minimize 
a b

 (3) 
, , , , ,

th to rese
 ε  is a small 

constant that can be set such that baEbap cE
p ,),(min ∈<⋅ε , 

which is same as that defined in Eq. (2). yu,v is a irror binary 
variable of 

vuy ,′  to facilitate the calcul t 
caused by the protection segments, and will be further 
discussed lat  

Each of x

m
ation of the total cos

er. 

w

a,b and yu,v indicates the number of times the 

orking and mass protection paths traverses 
wEba ∈),( and 

( , ) pu v E′∈ , respectively. The reason of setting y’ ger 
a binary variable is that path Q, which is composed 

of the protection segments of all the protection domains, may 
have loops in case the protection segments of two different 
protection domains traverse through the same link. Therefore, 
y’

u,v an inte
instead of 

u,v may larger than 1. Therefore, the concatenation of all links 
with xa,b = 1 yields W, while the concatenation all the links 
with y’u,v ≥ 1 forms Q. It is clear that the overlapped links 
between W and Q should not be considered when calculating 
the cost for the corresponding protection segments in the target 
function. Besides, we should count once for each link traversed 
by Q even if Q traverses any link by multiple times due to the 
possible spare capacity sharing between protection segments of 
any two protection domains for the connection. Therefore, a 
transformation is required from the integer variable 

vuy ,′  
(defined in G’p) into a new binary variable, denoted as yu,v

  for ( , ) , ( , )p pu v u v E u v E

 
(defined in Gp). This transformation can be simply done by 
filtering out those links taken by Q which are defined in G’p 
but not in Gp. This filtering can be done with the following 
linear formula: 

max , 0u vk y y ,
′ ′∀ ∈ ∀ ∈

JJJG  

In the transformation, yu,v is zero if is zero, and is 1 if 

⋅ − ≥JJJG

,u vy′JJJG  

,u vy′JJJG >0. As for ru,v, it is for the protection segment taking 
unit of spare capacity along link (a,b), which depends on 

the value of y
per-

u,v and has the same physical meaning as that of 
the parameter W

jsr  defined in Eq. (2) if link (u,v) is equivalent 
to link j. This ment will be discussed and verified later in 
this section.  

The target fu

state

nction is subject to the following constraints: 

1      for 
0   otherwise            w w

a b b a
a b E b a E

, ,
( , ) ( , )

1                  s a
x x d a a N

∈ ∈

⎪
==⎧

− = − == ∈⎨
⎪
⎩

∑ ∑   (4) 

N ∈   (5) 

Each Eq. (4) and (5) is  the flow conservatin constraint for the 

exclusive in 

, ,
( , ) ( , )

1                       
1         for 
0   otherwise                p p

a b b a
a b E b a E

s a
y y d a a

′ ′∈ ∈

==⎧
⎪′ ′− = − ==⎨
⎪
⎩

∑ ∑

working and mass protection paths, respectively.  
It is important to note that xa,b and 

,a by′JJJG  will be 
terms of the physical links they take. wever, a link can be 
taken by 

.a by
 Ho

′HJJJ in a reversed direction only if xa,b pass through it. 
Besides, h reversed arc can be used only once since the 
algorithm only allows two working segments overlapped. The 
above statements can be formulated into the following two 
constraints:  

eac
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max , max,

,

  for ( ) , ( , )

                      for ( , ) , ( , )

a b w pa b

a b w p

k x y k a,b E a b E

,a bx y a b E

′⋅ + ≤ ∀ ∈ ∀ ∈

′≥ ∀ ∈ ∀

JJJG

HJJJ

JJJG

HJJJ
a b E

′

′∈

E

∈

N∈

( , ) ws b E∈

k x k x k⋅ + ⋅ − ⋅

  

where 
.a b

 represents the reversed link of E’y′HJJJ p. Under the 
above two constraints, Q has to be disjoint from W except for 
those arcs of W being reversed (see Fig. 6). These two 
constraints not only assert the disjointedness of the working 
and the corresponding protection segment, but also facilitate 
the indication of the switching/merging nodes for each 
protection domain along W.  

A pair of variables, lxa,b (with a size of |Ew| ) and ly’a,b (with a 
size of |E’p|), is assigned to each link along W and Q, 
respectively, such that the first link from the source has a label 
of 1; and if a protection domain ends or starts at a node, the 
labels of the following arcs will be increased by 1. This 
labelling method is similar to that proposed in [7]. Let kmax be 
the number of protection domains with an upper bound |N|-1. 
In solving the formulation, the value of K should be set to the 
upper bound: |N|-1 to guarantee the derivation of the optimal 
solution. If the value of kmax is set less than kopt (i.e., the 
number of protection domain in the optimal solution), the LP 
solver cannot return an optimal solution although we have a 
smaller problem size.   

For lxa,b, we have the following constraints: 
max , ,(2 1) 0  for  ( )a b a b wk x lx a,b⋅ − ⋅ ≥ ≥ ∀ ∈             (6) 

, , , ,
( , ) ( , ) ( , ) ( , )

max , max , max
( , ) ( , )

2    

w w p p

w w

a b b a a b b a
a b E b a E a b E b a E

a d a s a d a s

a b b a
a b E b a E

a d a s

lx lx y y

k x k x k a N

∈ ∈ ′ ′∈ ∈
≠ ≠ ≠ ≠

∈ ∈
≠ ≠

′ ′− ≥ +

+ ⋅ + ⋅ − ⋅ ∀

∑ ∑ ∑ ∑

∑ ∑

JJJG JJJG
JJJG JJJG

           (7) 

, ,
( , ) ( , )

, ,
( , ) ( , )

  

w w

p p

a b a b
a b E b a E

a d a s

a b b a
a b E b a E

a d a s

lx lx

y y a

∈ ∈
≠ ≠

′ ′∈ ∈
≠ ≠

− ≤

′ ′+ ∀

∑ ∑

∑ ∑JJJG JJJG
JJJG JJJG

             (8) 

, 1    s blx b N= ∀ ∈∑                (9) 

The constraint in Eq. (6) ensures that lxa,b is upper-bounded 
by (2kmax-1), and is nonzero only if W passes through (a,b). To 
verify Eq. (7) and Eq. (8), the following four situations are 
defined for a node (not the source or destination) taken by W: 
(a) Q merges back to W at the node; (b) Q switches out of W at 
the node; (c) Q merges back and switches out of W at the node; 
(d) otherwise. Eq. (7) and (8) behave as a special type of flow 
conservation constraint upon the net change of lxa,b for node a 
in the network, which is denoted at the left-hand side of the 
equations. In Eq. (7), the value of lxa,b of node a along W 
increases by 1 in the case of situations (a) and (b), and 

increases by 2 in the case of situation (c), and is unchanged 
otherwise. The constraint on the net change in terms of lxa,b has 
a lower bound specified at the right-hand side of the equation, 
where the term 

max , max , max( , ) , ( , ) ,w w
a b a ba b E a d a b E a s∈ ≠ ∈ ≠

2∑ ∑

y′

 
checks if node a is taken by W. It is clear that the term is 0 if 
node a is traversed by W, and is -2kmax otherwise. Therefore, if 
node a is not taken by W, Eq. (7) automatically holds.  

The four cases specified in Eq. (7) are presented as follows. 
In the case of (a), the increase of lxa,b is 1 since  

,( , ) ,p a ba b E a d′∈ ≠
0=∑ JJJGJJJG y′ =  and 

,( , ) ,p b ab a E a s′∈ ≠
1∑ JJJGJJJG

y′

 (since Q merges 
back to W at node a). In case (b), the increase of lxa,b is still 1 
because 

,( , ) ,p a ba b E a s′∈ ≠
0=∑ JJJGJJJG y′ and 

,( , ) ,p b ab a E a d′∈ ≠
1=∑ JJJGJJJG

y y

. In 
situation (c), increase of lxa,b is  2 since 

, ,( , ) , ( , ) ,p pa b b aa b E a d b a E a s′ ′
1

∈ ≠ ∈ ≠
′ ′= =∑ ∑JJJG JJJGJJJG JJJG

E

. If node a is neither a 
switching nor a merging node (but it is taken by W), the 
right-hand-side of Eq. (7) becomes 0, in which no change upon 
lxa,b is required.  

Eq. (8) basically has the same working principles as Eq. (7) 
except that when node a is not taken by W, the right-hand side 
becomes 0 instead of -2kmax. Both Eq. (7) and (8) constrain the 
net change of the value of lxa,b to be either 0, 1, or 2, for any 
node a taken by W, depending on how path Q switches out and 
merges back to W. Eq. (9) sets lxa,b to 1 if node a is the source 
node. 

For ly’a,b, we have the following constraints:  

max , ,(2 1) 0   for  ( )a b a b pk y ly a,b′ ′ ′⋅ − ⋅ ≥ ≥ ∀ ∈              (10) 

, ,
( , ) ( , )

0     
p p

a b b a
a b E b a E

a d a s

ly ly a N
′ ′∈ ∈

≠ ≠

′ ′− ≥ ∀ ∈∑ ∑           (11) 

( ) ( ), , , ,, ,
( , ) ( , ) ( , ) ( , )

max , max , max
( , ) ( , )

2 2
max , max ,

( , ) ( , )

    2

    

p p w w

p p

w w

a b b a a b b aa b b a
a b E b a E a b E b a E

a d a sa d a s

a b b a
a b E b a E

a d a s

b a a b
b a E a b E

a s a

ly ly x y x y

k y k y k

k x k x

′ ′∈ ∈ ∈ ∈
≠ ≠≠ ≠

′ ′∈ ∈
≠ ≠

∈ ∈
≠ ≠

′ ′ ′− ≥ − + −

′ ′+ ⋅ + ⋅ − ⋅

+ ⋅ + ⋅

′∑ ∑ ∑ ∑

∑ ∑

∑

HJJJ HJJJ

2
max2    

d

k a N− ⋅ ∀ ∈∑

(12) 

, ,
( , ) ( , )

, ,, ,
( , ) ( , )

( ) ( )  

p p

w w

a b b a
a b E b a E

a d a s

a b b aa b b a
a b E b a E

a d a s

ly ly

x y x y a

′ ′∈ ∈
≠ ≠

∈ ∈
≠ ≠

′ ′− ≤

′ ′ N− + − ∀ ∈

∑ ∑

∑ ∑HJJJ HJJJ

       (13) 

,
( , )

1  a b
s b E

ly  b N
′∈

′
p

= ∀ ∈∑               (14) 

The constraint in Eq. (10) ensures that ly’a,b is nonzero only if q 
passes through arc (a,b). The constraint in Eq. (11), (12) and 
(13) ensures that the value of ly’a,b on path Q increases by 1 
only if Q merges back to W or Q switches out of W at node a. 
The idea behind Eq. (11), (12) and Eq. (13) is similar to that of 
Eq. (7) and Eq. (8). The only difference is that instead of the 
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forward arcs of Q (denoted as 
,a by′JJJG ), the term (xa,b – 

,a by′HJJJ ) is 
used, which is non-zero for link (a,b) along W not taken by Q. 
The constraint in Eq. (14) is to set ly’a,b as 1 if node a is the 
source node, and that there would be only a single protection 
link stretching out of the source node. Please refer to Fig. 8 for 
an explicit illustration for the variables formulated above. It 
can be easily observed that the maximum of lxa,b  is 2kmax – 1; 
and the maximum of ly’a,b is less than 

max ,(2 1) a bk y′− ⋅  even if 
Q have loops. 

With lx and ly’ link labels, path W is divided into segments 
such that each link along it is covered by at least one protection 
segment. This effort introduces max wk E⋅ and 

max pk E⋅  
link-domain incidence binary variables denoted as δxk

a,b and 
δyk

a,b, which is 1 if link (a,b) is traversed by the working and 
protection segment of the k-th protection domain, respectively. 
Note that the only variable defined in graph Ep is the variable 

in the formulation. We can alternatively define the 
variable  upon E’

k
bay ,δ

k
bay ,δ p instead of having a new graph Ep, in 

which the formulation turns out to take only two residual 
graphs. Although it is a way more tractable to implement, there 
would be at most max wk E⋅  variables unnecessarily induced 
due to the fact that we do not need to define  on the 
reversed links of E’

k
bay ,δ

p.  
 

 
Fig. 8. An example showing the variables xa,b, y’a,b, lxa,b, and 
ly’a,b. It is zero for the parameters of a link not shown on the 

figure. 
For , the following constraints are introduced: k

bay ,δ
max

,
1

2 1    ( , )
k

k
a,b pa b

k
( k ) δy ly  a b E

=

′− ⋅ = ∀ ∈∑ JJJG           (15) 

max

,
1

'    ( , )
k

k
a,b pa b

k
δy y a b E

=

= ∀ ∈∑ JJJG             (16) 

, max0        1~   ( , )k
a b py k k    a bδ≤ ∀ = ∀ ∈E           (17) 

( ), , max , max
( , ) ( , ) ( , )

(2 1) (2 1)

                                                                                               
w p p

k k
a b a b a b b a

a b E a b E b a E
lx x k y k y

a N

δ δ
∈ ∈ ∈

− + ≤ − ⋅ − − ⋅

∀ ∈

∑ ∑ ∑ ,   (18) 

( )max , max , , ,
( , ) ( , ) ( , )

(2 1) (2 1)

                                                                                              
p p w

k k
a b b a b a b a

a b E b a E b a E
k y k y lx x

a N

δ δ
∈ ∈ ∈

− ⋅ − − ⋅ ≤ +

∀ ∈

∑ ∑ ∑  (19) 

Eq. (15) can be easily verified by observing Fig. 8, where the 
value of ly’a,b on Q of the first protection domain is 1; and in 
the second protection domain ly’a,b is 3; and in the k-th 
protection domain ly’a,b is 2k – 1. Eq. (15) ensures that the 
number of traversals of path Q upon each link is correctly 
counted. It is clear that Eq. (15), Eq. (16) and Eq. (17) set 
δyk

a,b=1 only when , 2a bly k 1′ = − . Eq. (18) and Eq. (19) are 
flow conservation constraints for δyk

a,b since 
,( , ) w

b ab a E∈
lx∑  is 0 

for all nodes accept for the ones along W. This ensures, that 
δyk

a,b to be a flows starting from a node along W with label 
lx=2k-1-1 (an incomming arc  has the label) and terminate at 
a node along W with label lx=2k-1+1 (an outgoing arc has the 
label). 
For δxk

a,b, the following constraints are introduced: 
max

, , ,
1

1 (2 1) 1    ( )
k

k
a b a b wa b

k
k x lx ly a,bδ

=

′− ≤ ⋅ − ⋅ − − ≤ ∀ ∈∑ HJJJ E      (20) 

max

, , ,
1

   ( )
k

k
a b a b wa b

k
x x y a,b Eδ

=

′= + ∀ ∈∑ HJJJ          (21) 

, , max(2 1) 1      1 ~   ( )k
a b a b wk x lx k k  a,bδ⋅ − ⋅ ≤ + ∀ = ∀ ∈ E (22) 

, max0 1       1 ~   ( )k
a b wx k k  a,bδ≤ ≤ ∀ = ∀ ∈ E          (23) 

Eq. (20) can be easily verified by the following argument. The 
value of lxa,b of link (a,b) taken by W in the first protection 
domain is either 1 or 2, depending on whether or not there is 
overlapped link(s) between the working segments of the first 
and the second protection domain; while on the links of the 
k-th protection domain, we have  2k – 2 = (2k – 1) – 1 ≤  lxa,b 
≤ 2k = (2k – 1) + 1. Since the overlapped link(s) of two 
neighbour working segments is counted twice in the term , 
while the corresponding reversed arcs of G’

k
bax ,δ

p are taken by Q. 
This rule is formulated as Eq. (21). If the reversed arcs of W in 
G’p is used by Q, then lxa,b = 

,a b
; otherwise 

,a bly′HJJJ ly′HJJJ = 0. With 
this, 

k ,(2 1) k
a bk xδ− ⋅∑  is less than lxa,b + 

,a bly′HJJJ + 1, and is 
larger than lxa,b + 

,a bly′HJJJ - 1  as shown in Eq. (20). To set the 
realtionsship of three variables ( , lxk

bax ,δ a,b and 
,a bly′HJJJ ) with 

linear equations a third linearly independent equation is needed. 
Thus Eq. (22) is formulated, which trivially holds and 
independent form Eq. (20), (21).  

The constraint upon the variable defined in the target 
function is as follows:  

,u vr

,
,

, , , ma

,
,

1     1 ~  
( )

( ) ,  ( ) ( ) 

a b
u vk k

a b u v u v

a b
w p u v u,v

sh
x y r k k

b W
a,b E u,v E , sh f b W

δ δ+ − − ≤ ∀ =

∀ ∈ ∀ ∈ + ≥

x ,

E

         (24) 

, 0  ( , )u v pr u v≥ ∀ ∈              (25) 
Here the SRLG constraint is considered using a pre-defined 
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pw EE ×  matrix recording , where 

wp , which can be prepared off-line and 
behaves as an upper bound of spare capacity along link (u,v) 
sharable by the backup segment if the corresponding working 
segment passes through link (a,b). Eq. (24) ensures that when 
link (a,b) and (u,v) is taken by the working and protection 
segments in the k-th protection domain, respectively, the 
resultant amount of scaling (i.e., r

ba
vush ,

,

Ea,bEvu ∈∈ )( and ),(

u,v) is at least a b
,
,1 / ( )u vsh b W−  

(since ). If ≥ b(W), it means that there is 
sufficient sharable spare capacity along link (u,v) that can be 
taken to protect any additional b(W) units of working capacity 
along link (a,b). In this case, r

2,, =+ k
vu

k
ba yx δδ ba

vush ,
,

u,v = 0, and the only cost imposed 
upon the consumption of the sharable spare capacity along link 
(u,v) isε , as shown in the target function.  

The following constraint imposes a bandwidth limitation 
upon the consumption of spare capacity. 

, , max

,
, ,

1     1~ , ( , ) ,

( , ) ,  and  ( )

k k
a b u v w

a b
p u v u v

x y k k a b

u v E sh f b W

δ δ+ ≤ ∀ = ∀ ∈

∀ ∈ + <

E           (26) 

Eq. (26) ensures that if ,
, , ( )a b

u v u vsh f b W+ < , link (a,b) and (u,v) 
cannot be used at the same time for a working and protection 
segment in the same protection domain. Note, ru,v is 
automatically transformed from E’p to Ep such that values of 
ru,v at those reverse arcs in E’p are set to zero. 

It is clear that the adoption of the second graph has 
successfully defined all the three states for the protection path 
to take spare capacity, which are the case of ,

, ( )a b
u vsh b W≥ , the 

case of ,u v u v
,
, ,

,( )a b a b
u vsh f b W sh+ ≥ >

, ( )a b

, and the case of 

, ,u v u vsh f b W+ <

)

. The former two cases are jointly defined by 
Eq. (24) and Eq. (25), where ru,v is constrained no smaller than 

,
,1 / (a b

u vsh b W− and 0 in the two cases, respectively; while the 
latter case is defined by Eq. (26), which prohibits the traversal 
of any protection segment through (u,v) if there is no sufficient 
capacity along the link.  

To sum up the above, the shared protection problem has been 
formulated with the same spare link-state defined in Eq. (2), in 
which ru,v is equivalent to provided that link (u,v) is 
equivalent to link j. With the ILP formulation, we claim that all 
the three states for the protection path to take spare capacity 
can be well defined. Readers are encouraged to compare the 
resultant cost function adopted in the ILP formulation with that 
defined in Section II. It can also be observed that the use of the 
residual graphs E

W
jr

w and Ep along with the constraints of Eq. (24), 
Eq. (25) and Eq. (26) has imposed a bandwidth limitation 
constraint along each link upon the selection of working and 
protection segment of each protection domain, respectively. 
Without such a design, the extra constraint on the feasibility of 
spare capacity resource sharing and the link bandwidth 
limitation for protection paths can never be defined at the same 
time by using a single graph. 

The number of variables in an ILP formulation directly 

influences the computation time required to solve the 
formulation. In this formulation, the number of variables is 

max maxw p
, and the number of rows in the 

constraint matrix (where the linear formulation can be 
expressed in a general form as 

( 4) ( 3)k E k E+ ⋅ + + ⋅

A⋅x=b with a target to minimize 
x⋅c) is: NEE pw8  plus the SRLG constraints shown 
in Eq. (24) and (26). Therefore, the number of rows in the 
matrix

⋅+⋅+⋅ 119

A has an upper bound 

max w p w p8 9 11k E E E E N⋅ ⋅ + ⋅ + ⋅ + ⋅ . The computation time and 
memory occupation for each network topology adopted in this 
study will be shown in Section V. 

IV A HEURISTIC APPROACH – CASCADED 
DIVERSE ROUTING (CDR) 

A novel heuristic algorithm called Cascaded Diverse Routing 
(CDR) is introduced in this section to perform survivable 
routing for segment shared protection. In general, the efforts of 
pre-defining a set of candidate switching/merging node-pairs 
and the adoption of the Iterative Two-Step-Approach (ITSA) 
algorithm [12] distinguish this heuristic from its counterparts.  

With CDR, the switching and merging nodes of protection 
domain i is denoted as PSL(i) (which is the abbreviation of 
Path Switch LSR, where LSR is Label Switched Router in the 
context of Multi-Protocol Label Switching) and PML(i) (which 
is the abbreviation of Path Merged LSR), respectively. As an 
example shown in Fig. 9, the second protection domain has 
node E (or J) as PSL (or PML), which switches over (or merges 
back) the affected traffic flows originally along the working 
segment E-F-G-H-I as any failure occurs upon the working 
segment. The heuristic is characterized by the fact that the 
PSL-PML pairs are pre-defined to make the design space 
smaller. The algorithm contains the following three steps: 
Step-1: Select the shortest M alternate paths from the 

k-shortest paths in terms of hop count for each node-pair.  
Step-2: Define a series of PSL-PML pairs along each alternate 

path with a fixed distance D. Step (1) and (2) can be 
performed before the connection request arrives (or off-line). 
The distance D between PSL(i) and PML(i) in terms of hop 
count is called diameter of protection domain i. 

Step-3: As a connection request arrives, the ITSA algorithm is 
invoked upon a set of PSL-PML pairs along an alternate 
path. This is then iteratively performed along each alternate 
path until a feasible solution is derived.  

A         B         C         D         E          F         G         H          I           J         K          L          M         N

W2

Protection domain 1 Protection domain 2 Protection domain 3

W1
S1 S2

 
Fig. 9. An illustration of protection domains and PSL-PML 

pairs for W1. 
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In this study, the PSL-PML pairs are assigned to an alternate 
path according to the following pseudo-code. First, the nodes 
with a nodal degree larger than 2 is labelled from 1 to N’, 
where N’ is the number of nodes with a nodal degree larger 
than 2 along the alternate path. 

PSL(0) = PML(0) := 0; 
overlap := 0; /* a flag which is 1 if the working segment of the 
current protection domain overlaps with that of its immediate 
upstream protection domain, and 0 otherwise; */ 
PSL(1) := 1; /* the source node is the PSL of the first protection 
domain; */ 
i := 1; /* index for protection domains; */ 
For n := 2 to N’ 

If (n == PML(i – 1) – overlap + D),  
PML(i) := n; i++; 
If (n = N’) Break; /* the whole job is complete; */ End If; 

Else If (ND(n) >= ND(n – 1))    
PSL(i) := n; overlap := 0;  

/* ND(n) returns the nodal degree of node n, and both PSL(i) 
and PML(i-1) are at node n; */ 
Else  

PSL(i) := n-1; overlap := 1; 
Else If (PML(i-1) – overlap +D > N’)   

/* the diameter of the last protection domain is smaller 
than D; */ 

 PML(i) := N’; Break; 
End If;   

End For;     
In the above PSL-PML assignment algorithm, the working 

segments of two neighbour protection domains can overlap 
with each other either by a single node (the case with overlap = 
0) or by two nodes and a link (the case with overlap = 1). The 
node with a higher nodal degree will be prioritized to serve as a 
PSL. This algorithm is simple but can efficiently determine the 
PSL-PML pairs framed by an alternate path. 

In CDR, the ITSA algorithm is adopted to find the working 
and backup segments for each PSL-PML pair each alternate 
path, in which the cost function defined in Eq. (1) and Eq. (2) 
are adopted. It is clear that each alternate path is to “frame” the 
assignment of a set of PSL-PML pairs, which yields a fact that 
the working segment in protection domain i does not 
necessarily coincide with the segment between PSL(i) and 
PML(i) of the alternate path. 

CDR yields merits in terms of network practical 
implementation. Due to the independency of the computation 
effort possibly held in the PSL of each protection domain, CDR 
incorporate with a distributed-control environment in such a 
way that each pre-assigned PSL instead of the source node of 
the connection takes the responsibility of calculating the 
working and protection segments in the corresponding 
protection domain. This design can release workload of the 
edge routers by possibly addressing intelligence upon the glass 

nodes in the networks. In addition, the segmentation of the 
whole diverse routing process can help reducing the total 
computation complexity. Since each PSL-PML pair along an 
alternate path is pre-defined, some of the computation tasks 
can go through a look-up-table process, such as the calculation 
of the SH matrix defined in Section II.C. Due to the fixed and 
relatively short distance between a PSL-PML pair, the number 
of iterations allowed for the ITSA algorithm can be much 
smaller than the case where an end-to-end working and 
protection path-pair is calculated, which further reduces the 
computation complexity.  

V PERFORMANCE EVALUATION 

We conduct experiments to verify the proposed ILP model 
and the CDR algorithm on the networks topologies as listed in 
Table I. The experiment is divided into two parts in terms of 
their objectives. The first part investigates the diameter for 
CDR that can achieve the best performance in terms of 
blocking probability in each network topology. The second is 
aimed at comparing the CDR algorithm with the other reported 
schemes. In the second part, we will also examine the 
optimality that is achievable by each scheme relative to the 
results derived from solving the ILP formulation.  

Table I  
Topology of the networks adopted in the simulation. All the 

topologies are two-connected mesh networks. 
Network N0 N1 N2 N3 N4 

No. of nodes 10 22 30 79 100 
No. of links 28 88 126 216 358 

Nodal degree 2.8 4.0 4.2 2.73 3.58 

The experiment is arranged as follows. Each directional 
link in the networks contains 32 units of bandwidth. We 
consider the capacity efficiency in terms of blocking 
probability for the dynamically arrived connection requests (of 
a single bandwidth unit) following the Poisson model and with 
a holding time defined in an exponential distribution function. 
In the experiment arrangement, node-pair (i,j) has a traffic load 

)/( ,,, jijiji µληρ ⋅= , where 
jiji ,, , µλ are arrival and departure 

rate upon the node-pair (i,j), respectively. Without loss of 
generality, 

ji ,µ is set to 1, while 
ji ,λ is a random number 

between 0.5~1.5 for every node-pair (i,j) such that each 
node-pair may be subject to different amount of path 
connection setup demand. The scaling parameter η  represents 
the level of traffic load in the network with the unit of Erlang. 
Each data point in the figures is the blocking probability for 
100,000 connection requests using a specific survivable routing 
algorithm. The confidence interval is within 0.1% if we take 
the result of 100 connection requests as a trial.  
A Derivation of the Best Diameter for CDR 

With CDR, since the diameter of protection domains may 
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influence the total throughput, we first derive the best diameter 
for achieving the best performance in each network topology 
through simulation. Fig. 11 shows the simulation results, where 
“CDR(D)” is the CDR scheme taking the diameter of each 
protection domain as D; and the “Path” is the scheme with the 
number of protection domains as 1 for each connection. With 
CDR, the ITSA algorithm is invoked for solving the working 
and protection segment pair in the corresponding protection 
domain. In this simulation, the number of alternate paths 
pre-defined for each node-pair is 10 (i.e., M = 10), and the 
number of iterations allowed for the ITSA algorithm is 10, 10, 
20, and 25 for the network N1, N2, N3, and N4. To achieve 
better computation efficiency, the algorithm returns either 
when 6 iterations are performed or when the least-cost 
working-protection segment-pair is derived. If the algorithm 
fails to find a feasible working and protection segment pair 
within 6 iterations in any protection domain along a 
pre-defined alternate path, it will drop the results/calculation 
processes of all the other protection domains framed by the 
alternate path, and proceed to inspect the next alternate path. If 
the algorithm fails to find a solution after inspecting all the 
alternate paths, a blocking is announced for the connection 
request. The parameter cj in Eq. (1) is defined as: cj = 1/rcj, 
where rcj is the residual bandwidth along link j.  

The experiment results are shown in Fig. 10. It is clear that 
the path shared protection scheme is outperformed by CDR 
with any size of protection domain. With the small 22-node 
and 30-node networks in which the average distance between 
each S-D pair is 2.49 and 2.71, respectively, the best 
performance in capacity efficiency is achieved in the case 
CDR(2). With the 79-node and 100-node networks in which 
the average distance between each S-D pair is 6.57 and 9.5, 
respectively, the best capacity efficiency is achieved in the case 
CDR(3) and CDR(4), respectively. It is observed that the best 
diameter of protection domains varies as the network size is 
different.  
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Fig. 10. Simulation for CDR with different traffic load and 
diameters of protection domains. 

B The Experiment for Comparison 

In addition to the CDR algorithm with the best diameter in 
each network topology (i.e., 2, 2, 3, and 4 hops for the network 
N1, N2, N3 and N4, respectively), we also adopt the segment 
shared protection algorithms in [6] and [7] for making a 
comparison. Note that in this study we focus on capacity 
efficiency of each algorithm, and will not pay attention to the 
resultant restoration time.  

The implementation of the other two schemes is briefly 
described as follows. The first scheme taken for comparison in 
this simulation is the dynamic-programming-based solution 
provided in [7], which is denoted as PROMISE. With 
PROMISE, a limited number of combinations of segmentation 
are inspected along a single working path, which is derived in 
advance by invoking Dijkstra’s shortest path first algorithm 
with the cost function shown in Eq. (1) and Eq. (3). The second 
algorithm is provided in [9] (denoted as OPDA), where the 
length limitation for each candidate cycle is 10 hops. Since 
OPDA is originally designed for optical networks with partial 
wavelength conversion capability in each node, we simplify the 
algorithm by taking the whole networks as having a single 
wavelength plane.  

Fig. 11 shows the simulation results of the comparison made 
among the three cases under different network topologies and 
traffic load. It is clear that CDR outperforms the other two 
while OPDA is the worst. An observation is made upon CDR 
and PROMISE described as follows. The two schemes place 
the scarce computation resources on different searching 
dimensions for allocating the protection domains. The CDR 
algorithm pre-defines several sets of PSL-PML pairs with fixed 
distance (back-tract of one hop is allowed) for each S-D pair, 
and tries to find a better solution by manipulating the location 
of working path segments. The PROMISE scheme, on the 
other hand, tries to maximize the spare capacity resource 
sharing by finding better locations of the switching and 
merging node (i.e., PSL-PML pairs) for each protection domain 
along a working path given in advance. With different 
approximate terms, the two approaches yield different blocking 
performance, optimality (see Table III), and computation time 
(see Fig. 12), in which a compromise upon different design 
dimensions is initiated in each scheme. 
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Fig. 11. Comparison among the three schemes: CDR, OPDA 
and PROMISE using the topologies N1, N2, N3, and N4. 

As for OPDA, it is seen outperformed by both of the other 
two schemes. Since OPDA is designed for WDM networks 
with partial wavelength conversion capability in each node, the 
migration of OPDA to this study may invalidate the merits of 
the algorithm that are originally possessed. For example, 
OPDA provides a strong functionality to deal with the 
non-linearity inherent in the task of routing and wavelength 
assignment for partial wavelength convertible optical networks, 
which, however, is not appreciated in this case. 

Fig. 12 shows the average computation time for allocating a 
connection request in each case, which shows that the CDR 
scheme takes a little bit more computation time than 
PROMISE with the current experiment settings, while OPDA 
yields the least average computation time in the simulation. 
Note that this computation time is achieved in each case by 
creating and maintaining a EE × matrix (called spare 
provision matrix [15]) while the simulation is running, which 
records the dependency between spare and working capacity 
along each pair of links in the network.  

We solve the ILP formulation in this paper using CPLEX 7.5 
and a Sun Ultra 80 workstation. The average computation time 
(including time taken by the pre-solver of CPLEX), memory 
occupation, the number of rows, columns and the number of 
non-zero elements of the constraint matrix (after the CPLEX 
pre-solver reducing the size of the problem) are shown for both 
cases in Table II.  
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Fig. 12. Comparison of average computation time for each case 
in the network topologies N1, N2, N3, and N4. 

It is clear that the complexity of solving the ILP grows very 
fast as the network size increases, which leads to a fact that the 
approach can hardly be applied for any on-line purpose. 
Therefore, it is positioned as a benchmark to evaluate the 

optimality achievable by the other heuristic counterparts. Table 
III is a demonstration on the optimality achieved by each 
scheme in the simulation. The offset from the optimality is 
defined as Q = Ca/Copt – 1, where Ca is the total cost of the 
working and protection segments for the connection request by 
using a specific scheme, while Copt is the cost achieved by 
solving the ILP formulation. The index Q is called Offset of 
Optimality; in this particular case, Q is nothing but an 
evaluation on the extent of resource sharing plus the extra (or 
unnecessary) cost taken by the working path. The smaller the 
value of Q is the better optimality has the heuristic algorithm 
achieved. Due to the very lengthy computation process in the 
79- and 100-node networks, we only conduct this experiment 
in the 10-, 22- and 30-node networks, in which the ILP 
formulation is solved for every one of 1000 connection 
requests while the simulation is running in each case. Note that 
since the optimality is focused in this experiment, we do not 
consider any connection request that is blocked. Table III 
shows the average Q value and the average cost taken by each 
connection for in the experiment using N1 and N2. 

Table II 
The computation time and the amount of memory occupied for 

CPLEX solving the ILP formulation. 
 Time 

(sec) 
Memory  

(MB) Row Columns Non- 
zero 

N0 (10) 5.6 5 1772 281 6012 
N1 (22) 255 23 16996 993 53534 
N2 (30) 1185 42 31840 1293 99012 

Table III 
Offset of optimality (Q value) and the average cost taken by 

each connection request for all the schemes.  
 CDR PROMISE OPDA ILP 

9.3% 10.1% 13.8% 0% N1 
(22-node) 2.210 2.226 2.301 2.022 

12.1% 13.9% 16.4% 0% N2 
(30-node) 2.439 2.478 2.533 2.176 

V CONCLUSIONS 
In this paper we have studied dynamic survivable routing for 

a special type of protection, called segment shared protection, 
in which a novel Integer Linear Programming (ILP) 
formulation and a heuristic algorithm, called Cascaded Diverse 
Routing (CDR), are proposed. This paper first defines segment 
shared protection, and qualitatively demonstrates the 
advantages in using segment shared protection, which includes 
the facts that the restoration time can be shortened/guaranteed 
and that a higher possibility of resource sharing can happen 
between different protection segments. We also define the 
spare link-state taking the SRLG constraint into consideration. 
The ILP formulation is thus presented, where the 
switching/merging nodes and the corresponding least-cost 
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working and protection segment pair for a connection request 
are jointly determined in the programming process. A novel 
approach of arc reversal along with a graph transformation 
method is devised to keep the formulation linear and to deal 
with the situation that the working segments of two 
neighbouring protection domains may overlap with each other 
by more than a single node. Due to the very high computation 
complexity in solving the ILP, the heuristic algorithm, CDR, is 
introduced. CDR is characterized by the fact that each working 
and protection segment pair in a protection domain can be 
solved independently from solving that of the other protection 
domains for a connection request, which is designed to achieve 
a better performance/computation-complexity gain. To verify 
the proposed algorithms, a series of experiments/simulation are 
conducted. By the simulation results, we first find that CDR 
with a well designed diameter for each protection domain in a 
specific network topology can yield the best performance. With 
the best diameter in each network topology, CDR is compared 
with two reported counterparts, namely PROMISE and OPDA. 
The simulation results show that CDR can achieve the best 
performance at the expense of longer computation time while 
OPDA yields the worst. We also examine the optimality 
achievable in each algorithm referring to the results of solving 
the ILP formulation, and find that the better performance of 
CDR is due to the smaller offset of optimality, which is in turn 
caused by the flexibility of selecting a working segment in 
each protection domain.  

REFERENCES 

[1] D. Zhou and S. Subramaniam, “Survivability in Optical 
Networks”, IEEE Networks, November/December 2000, pp. 
16-23. 

[2] P. –H. Ho and H. T. Mouftah, “A Framework of Service 
Guaranteed Shared Protection for Optical Networks, “IEEE 
Communications Magazine, Feb. 2002, pp. 97-103. 

[3] C. V. Saradhi and C. Siva Ram Murthy, “Dynamic 
Establishment of Segmented Protection Paths in Single and 
Multi-fiber WDM Mesh Networks”, Proceedings SPIE 
OPTICOMM Aug. 2002, Boston, MA, pp. 211-222. 

[4] M. Kodialam and T. V. Lakeshman, “Dynamic Routing of 
Locally Restorable Bandwidth Guaranteed Tunnels Using 
Aggregated Link Usage Information”, Proceedings IEEE 
INFOCOM 2001, Anchorage, Alaska, pp. 376-385. 

[5] C. –F. Su and X. Su, “An On-line Distributed Protection 
Algorithm in WDM Networks”, in ICC 2001. 

[6] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and A. 
Srintson, “Algorithms for Computing QoS Paths with 
Restoration”, IEEE INFOCOM, San Francisco, April 2003. 

[7] D. Xu, Y. Xiong, and C. Qiao, “Protection with 
Multi-Segments (PROMISE) in Networks with Shared Risk 
Link Groups (SRLG)”, in the 40th Annual Allerton 
Conference on Communication, Control, and Computing, 
2002. 

[8] L. Li, M. Buddhikot, C. Chekuri, and K. Guo, ”Routing 
Bandwidth Guaranteed Paths with Local Restoration in 
Label Switched Networks”, The 10th IEEE International 
Conference on Network Protocols (ICNP), Nov. 2002, Paris, 
France.  

[9] P. -H. Ho and H. T. Mouftah, Spare Capacity Allocation for 
WDM Mesh Networks with Partial Wavelength Conversion 
Capacity", IEEE High Performance Switching and Routing, 
HPSR 2003.  

[10] D. Xu, C. Chunming, and Y. Xiong, “An Ultra-Fast 
Shared Path Protection Scheme – Distributed Partial 
Information Management, Part II”, The 10th IEEE 
International Conference on Network Protocols (ICNP), 
Nov. 2002, Paris, France.  

[11] Y. Xiong, D. Xu and C. Qiao, “Achieving Fast and 
Bandwidth Efficient Shared-path Protection”, IEEE Journal 
of Lightwave Technology, Feb. 2003. 

[12] P. –H. Ho and H. T. Mouftah, "On Optimal Diverse 
Routing for Shared Protection in Mesh WDM Networks", 
IEEE Transaction on Reliability. (to appear in March 2004) 

[13] J. Tapolcai and T. Cinkler, “On-line Routing Algorithm 
with Shared Protection in WDM Networks”, ONDM, 
Budapest, Hungary, Feb. 2003. 

[14] G. Li, D. Wang, C. Kalmanek, and R. Doverspike, 
"Efficient Distributed Path Selection for Shared Restoration 
Connections", IEEE INFOCOM 2002, NY, NY, June 2002. 

[15] Y. Liu, D. Tipper, and P. Siripongwutikorn, 
“Approximating Optimal Spare Capacity Allocation by 
Successive Survivable Routing”, Proceedings IEEE 
INFOCOM 2001, vol. 2, pp. 699-708, April 2001. 

[16] R. Ramamurthy, S. Sengupta, S. Chaudhuri, "Comparison 
of Centralized and Distributed Provisioning of Lightpaths in 
Mesh Optical networks", OFC 2001, Anaheim, CA, March 
2001. 

[17] E. Bouillet, J. –F. Labourdette, G. Ellina, R. Ramamurthy, 
and S. Chaudhuri, “Stochastic Approaches to Compute 
Shared Mesh Restored Lightpaths in Optical Network 
Architectures”, IEEE INFOCOM 2002, NY, NY, June 2002.  

[18] C. Qiao and D. Xu, "Distributed Partial Information 
Management (DPIM) Schemes for Survivable Networks - 
Part I", IEEE INFOCOM 2002, NY, NY, June 2002.  

[19] J. W. Surrballe and R. E. Tarjan, “A Quick Method for 
Finding Shortest Pairs of Disjoint Paths,” Networks, 
14(2):325-336, 1984. 

[20] D. Papadimitriou, F. Poppe, S. Dharanikota, R. Hartani, R. 
Jain, J. Jones, S. Venkatachalam, and Y. Xue, “Shared Risk 
Link Groups Inference and Processing”, Internet Draft, 
<draft-papadimitriou-ccamp-srlg-processing-02.txt>, work 
in progress, June 2003. 

[21] S. Yuan and J. P. Jue, “A Heuristic Routing Algorithm for 
Shared Protection in Connection- Oriented Networks,” 
Proceedings SPIE OPTCOMM 2001, Denver, CO, vol. 
4599, pp. 142-152, August 2001. 

 

 14



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


