
IEEE/ACM Transaction on Networking

Segment Shared Protection in Mesh Communications Networks with Bandwidth

Guaranteed Tunnels

Pin-Han Ho, IEEE Member, János Tapolcai, IEEE Member, and Tibor Cinkler, IEEE Member

Abstract – This paper focuses on the problem of dynamic
survivable routing for segment shared protection (SSP) in mesh
communication networks provisioning bandwidth guaranteed
tunnels. With SSP, a connection is settled by concatenating a
series of protection domains, each of which contains a working and
protection segment-pair behaving as a self-healing unit for
performing local restoration whenever the working segment is
subject to any unexpected interruption. We first discuss the
advantages of using SSP – the ability of shortening the restoration
time as well as achieving a higher throughput by saving spare
capacity required for 100% restorability; then the survivable
routing problem is formulated into an Integer Linear
Programming (ILP), where the switching/merging node-pair of
each protection domain along with the corresponding least-cost
working and protection segment-pair can be jointly determined
for a dynamically arrived connection request. A novel approach of
arc-reversal transformation is devised to deal with the situation
that the working segments of two neighbour protection domains
may overlap with each other by more than a single node. Due to a
very high computation complexity induced in solving the ILP, a
novel heuristic algorithm is proposed, named Cascaded Diverse
Routing (CDR), to allocate protection domains for a connection
request by performing diverse routing across a set of pre-defined
candidate switching/merging node-pairs. Experiments are
conducted on five two-connected network topologies to verify the
ILP and the CDR algorithm. We first find out the best diameter of
protection domains for the CDR scheme in each network topology.
Using the results of best diameters, CDR is compared with two
reported schemes, namely PROMISE and OPDA. We
demonstrate in the simulation results that the path shared
protection schemes are outperformed by the SSP schemes in terms
of blocking probability under all possible arrangements in the
experiment, and that CDR yields better performance than
PROMISE and OPDA due to the extra efforts in manipulating the
location of working segments at the expense of longer
computation time.
Keywords: segment shared protection (SSP), survivable routing,
working and protection paths, integer linear programming,
Shared Risk Link Group (SRLG).

I. INTRODUCTION

Survivability has emerged as one of the most important
issues in the design of modern communications networks with
bandwidth guaranteed tunnels. Survivable routing is
recognized as one of the best strategies to equip the networks

with service continuity by pre-planning link-disjoint or
node-disjoint protection paths for working capacity. With a
diversely routed working-protection path-pair, once the
working path is subject to any unexpected interruption, the
corresponding service can be restored by switching over the
working traffic to the protection path such that the failure is
circumvented. With the emergence of some commercially
applications and delay-sensitive services addressing stringent
requirements on data integrity and service continuity, the
design of survivable routing algorithms should not only be both
capacity- and computation-efficient, but also minimize the
possible restoration time for a specific connection, such that
the maximum benefits can be gained in the operation of carrier
networks.

Segment shared protection (SSP) is one of the best
approaches to meet the above design requirements, where a
connection is provisioned by concatenating a series of
protection domains, each of which contains a working and
protection segment-pair behaving as a self-healing unit for
performing local restoration when the working segment is
subject to any unexpected interruption. As shown in Fig. 1,
when the working path segment of protection domain 2 is
impaired unexpectedly (e.g., either link E-F, F-G, G-H, or H-I
is cut), the restoration is performed locally within protection
domain 2 such that the affected flow switches over to the
backup segment at node E (called switching node of the
protection domain) and merges back to the original working
path at node J (called merging node of the protection domain).

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment Working path segment Working path segment

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment Working path segment Working path segment

A B C D E F G H I J K L M N

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment Working path segment Working path segment

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment Working path segment Working path segment

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment
of protection domain 1

Working path segment
of protection domain 2

Working path segment
of protection domain 3

A B C D E F G H I J K L M N

Working path: A-B-C-D-E-F-G-H-I-J-K-L-M-N

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment Working path segment Working path segment

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment Working path segment Working path segment

A B C D E F G H I J K L M N

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment Working path segment Working path segment

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment Working path segment Working path segment

Protection domain 1 Protection domain 2 Protection domain 3

Working path segment
of protection domain 1

Working path segment
of protection domain 2

Working path segment
of protection domain 3

A B C D E F G H I J K L M N

Working path: A-B-C-D-E-F-G-H-I-J-K-L-M-N
Fig. 1. An illustration of SSP.

Comparing with its counterpart – path shared protection
[10-18], segment shared protection has been reported to
achieve a better throughput by maximizing the extent of spare
capacity resource sharing [2,7,21]. It can also impose a
stringent limitation on the restoration time for a specific

 1

IEEE/ACM Transaction on Networking

application by constraining the length/hop-count of the
working and protection segment in each protection domain.
The major difficulties of implementing SSP lie in the
dependency between the working and spare capacities as well
as the exponentially enlarged design space with the network
size in identifying a set of switching/merging node-pairs to
form protection domains for a connection request. Thus, most
previous studies focus on heuristic approaches to solve the
problem. In [2], a framework known as Short Leap Shared
Protection (SLSP) is proposed, which implements SSP by
pre-assigning a series of switching/merging node-pairs along a
given working path. The capacity-efficiency with SLSP is
expected to be further improved if the working and backup
segments can be jointly determined. In [3], an algorithm is
developed to find the working path first followed by its backup
path segments. The study is characterized by the fact that the
spare capacity sharing is not considered until the physical
routes of the backup path segments are defined. In [4] and [5],
the authors propose two similar dynamic algorithms to
switchover working traffic for each link from its immediate
upstream node and merge back to the original path at any of
the downstream nodes. Both studies do not impose any
limitation on the lengths of the backup paths, and may not be
able to guarantee the restoration time when a failure occurs.
Note that the unnecessarily lengthy backup paths have been
witnessed to impair the overall performance even if they share
spare capacity with the other backup paths [10,12].

The study of [6] provides an algorithm for computing QoS
paths with restoration, which is characterized by considering
multiple link metrics in searching the working and protection
segments. This study does not consider resource sharing and
adopt exhaustive searching for those protection segments for
the working path. The study in [7] proposes an Integer Linear
Programming (ILP) formulation for SSP to determine the
switching/merging node-pairs along the working path given in
advance. The algorithm is characterized by the efforts of
inspecting all possible number of protection domains for a
connection request and all possible combinations of allocation
under each given number of protection domains. Since the
formulation needs to have the working path first before the
protection segments can be derived, the solution may be far
from the optimal if the working path is not well selected. The
study in [8] takes a very similar approach to that in [7]. The
algorithm finds a protection segment for each link along the
working path given in advance, in which “backtrack” by D
hops is allowed, where D can be an arbitrary positive integer or
infinity. In the study of [9], a heuristic algorithm is proposed
for segment shared protection, called Optimal Protection
Domain Allocation (OPDA), where a graph transformation
algorithm, called transferred graph of cycles, is devised. Since
the algorithm needs to enumerate and align simple cycles in the

network topology as candidate cycles for a given working path,
it may impair the capacity efficiency if only a limited number
of cycles can be inspected within the allowed computation time.
It is notable that all of the above schemes deal with work and
protection paths separately, which are also known as Active
Path First (APF) [10].

To jointly determine a working and protection path-pair,
some studies focus on developing a programming-based
solution [4,11-13]. One of the key issues in formulating the
problem under the complete routing information scenario [4]
(i.e., the algorithm is aware of all the working and protection
paths along each link) is that the routing of the working path
and the dependency between working and spare capacity along
each link must be handled in a single step. Besides, the
consideration of multiple states for the protection path to
consume spare capacity along each link may easily leave the
formulation nonlinear [4]. Therefore, to our best knowledge a
linear programming-based solution that can optimally solve the
least-cost working and shared protection path-pair according to
the current link-state has never been reported before, let alone
the case of segment shared protection, which is considered
much more complicated.

The study in [4] provides an Integer Programming (InP) in
the complete routing information scenario for solving the
end-to-end working and shared protection path-pair according
to the current link-state. The formulation is nonetheless
nonlinear and cannot be solved by most of the commercially
available LP solvers. The study in [11] provides a
heuristic-based ILP formulation to deal with the problem,
where two scaling parameters are introduced to avoid the
nonlinearity possibly induced when multiple states of spare
capacity along each link are considered. The study in [12,13]
focuses on the complete routing information case and provides
an ILP formulation that can solve the problem with two states
of spare capacity along each link for the protection path –
either sharable or non-sharable, where the link bandwidth
constraint can never be addressed. It is clear that an ILP
formulation for segment shared protection considering all
possible states of spare capacity consumption along each link
in the complete routing information scenario has never been
seen before.

This paper contributes in formulating the problem into an ILP
working under the complete routing information scenario, in
which the location of the switching/merging nodes and the
corresponding working and protection segment-pairs for a
connection request can be derived in a single step according to
the current link-state. This is the first linear formulation that
can handle the dependency between working and spare
capacity for segment shared protection, where a novel method
of arc-reversal transformation is devised to deal with the

 2

IEEE/ACM Transaction on Networking

situation that working segments of two neighbour protection
domains may overlap with each other by more than a single
node (as shown in Fig. 1). To avoid the nonlinearity possibly
incurred when dealing with the multiple states for a protection
segment to take spare capacity, a graph transformation
technique is devised to facilitate the formulation.

Although the ILP can yield the least-cost (or optimal)
working and protection segment-pairs for a connection request,
the solving of the ILP nonetheless takes an intolerably large
amount of computation time. Therefore, this paper also
introduces a novel heuristic algorithm for solving the problem,
called Cascaded Diverse Routing (CDR), aiming to trade the
optimality in performance with the computation complexity.
The basic idea of CDR is to pre-define a set of candidate
switching/merging node-pairs, between each of which a
diverse routing algorithm, called Iterative Two-Step-Approach
(ITSA) [12], is conducted to find the corresponding working
and protection segment pair. We compare CDR with the
heuristic approaches reported in [7] and [9] through simulation,
namely PROMISE and OPDA, and examine the offset of
optimality in each case referring to the solutions from the ILP
formulation.

This paper is organized as follows. In Section II, an
overview on segment shared protection and spare capacity
resource sharing is conducted, where the cost functions for
both working and protection segments are defined. In Section
III, the ILP formulation for solving the segment shared
protection problem is presented. Section IV presents the
heuristic algorithm, Cascaded Diverse Routing (CDR). In
Section V, CDR is compared with two other reported schemes
through simulation and is verified by the results from the ILP
solution. Section VI concludes this paper.

II PROBLEM DEFINITION
A Concepts of Shared Risk Link Group (SRLG)

Shared Risk Link Group (SRLG) is defined as a group of
network elements (i.e., either links, nodes, physical devices,
software/protocol identities, or a mix of which, etc) subject to
the same risk of single failure. In practical cases an SRLG may
contain multiple seemingly unrelated and arbitrarily selected
links/nodes. We define that a working path is involved in an
SRLG if it traverses through any network element that belongs
to the SRLG. A path may be involved in multiple SRLG’s. A
working path is said to be SRLG-disjoint with its protection
path if the two paths are not involved in any common SRLG. In
this study, the SRLG-disjointedness for a working and
protection path-pair is the major effort of achieving 100%
restorability for the working data flows under the single failure
scenario.

Without loss of generality, this study focuses on the case

that each arc in the network topology is an SRLG. Under such a
premise, it is easy to see that a working path traversing through
H hops will be involved in no more than H different SRLG’s.
We raise the assumption that the probability of each physical
conduit to be subject to a failure is independent. In other words,
to achieve 100% restorability, it is sufficient and necessary that
every link traversed by the working path is protected by at least
one link-disjoint protection path.

In this study, all the working paths are assumed to be
loop-less. A working path may contain multiple protection
domains, each of which has a protection path. The spare
capacity taken by backup path segments is called spare
channels that are only reserved but not configured during the
normal operation. Therefore, the spare channels can also be
used by some best-effort traffic that can tolerate a service
interruption. In the event that a failure occurs that interrupts a
working path (such as a fibre-cut or loss of signal due to the
failure of any network element), the switching fabric structures
in the nodes along the corresponding protection path are
configured by prioritized signalling followed by traffic
switchover to recover the original service supported by the
working path. Therefore, the protection paths of different
working paths can reserve the same spare channels if the
working paths are not involved in a common SRLG, and are
considered to share the same risk of single failure. In this study,
two working paths share the same risk of single failure if and
only if they take any common arc in the network. In other
words, whether or not two protection paths can share a spare
channel depends on the physical location of their working
lightpaths. The dependency is the reason for the existence of
SRLG constraint [1]. A simple example is shown in Fig. 2. W1
and P1 form a working and protection path-pair. The protection
path of W2 (any other working path) should exclude the
possibility of using any of the spare channels taken by P1
because W2 traverses link A-B, which shares the same risk of a
single failure with W1.

1 2

W2

P1

W1 A B

Fig. 2. An example to illustrate the SRLG constraint.

For language precision, in the following context a “link” is
always directional while an “arc” is un-directional composed
of two directional links of the same ending nodes. We assume
that a link is physically bundled and is comprised of several
independent communication channels that provision data flows.
Therefore, a failure defined in this paper is limited to a link cut
that is possibly caused by a rodent bite or careless
construction/maintenance efforts. We take an assumption of
single failure scenario, where the algorithm only deal with the

 3

IEEE/ACM Transaction on Networking

situation that a single link in the total network is unexpectedly
interrupted at a moment.
B An Overview on SSP

The advantage of using SSP compared with path shared
protection lie in not only the reduction of restoration time, but
also the achievement of larger degree of sharing. The following
is an example to show the resultant capacity saving and
reduced restoration time in using SSP compared with path
shared protection. In Fig. 3, the network contains working path
W1 (A-B-C-D-E-F-G) and its link-disjoint protection path
along (A-H-C-J-E-K-G). Let W2 (C-D-E) is being allocated
with its protection path. In case path shared protection is
adopted, as shown in Fig. 3(a), the spare capacity taken by the
protection path of W1 can never be shared by the protection
path of W2 since both W1 and W2 are involved in a common
SRLG. For SSP shown in Fig. 3(b), on the other hand, W1 is
segmented into multiple segments, each of which is assigned
with a switching/merging node-pair and a protection segment.
For example, for the second protection domain, each switching
and merging node is C and E, respectively. Therefore, the
protection path of W2 can share the spare capacity taken by the
protection segments in the first and the third protection domain.
In this case, the number of working paths in an SRLG is
reduced such that the total amount of non-sharable spare
capacity in the network for a specific working segment is
reduced, which yields better throughput. Because the
restoration can be performed locally in each protection domain,
the propagation time of signalling messages can be largely
reduced.

A B C D E F G

H

J

K

W1
W2

A B C D E F G

H

J

K

W1
W2

(a)

A B C D E F G

H

J

K

W1
W2

Protection domain 1

Protection domain 2

Protection domain 3

A B C D E F G

H

J

K

W1
W2

Protection domain 1

Protection domain 2

Protection domain 3

(b)
Fig. 3. A comparison between the path shared protection and

SSP; (a) path shared protection; (b) SSP with
switching-merging pairs (A, C), (C, E), and (E, G) for the first,

second, and third protection domain, respectively.

In this study, the link-based shared protection [2] is taken as
a special case of SSP, in which every link along the working
path behaves as a working path segment with a
switching/merging node-pair for the corresponding protection
segment. The overhead in using segment shared protection

compared with path shared protection is as below. Firstly,
larger computation complexity is taken to solve the problem
due to the efforts in determining the switching/merging
node-pair of each protection domain. Secondly, a new suite of
signalling mechanism must be defined.

The signalling effort with SSP is briefly described as follows.
After a fault on the working path occurs, it is localized
immediately by the downstream neighbour node, which
notifies the switching node of the protection domain to activate
a traffic switchover. For the example in Fig. 1, a fault on link
C-D is localized by its immediate downstream node D. A fault
on link E-F is localized by the immediate downstream node F.
In the former case, node D sends notification indicator signal
(NIS) to notify node A and F that a fault occurred in their
protection domain. In the latter case, node F sends an NIS to
node E and J for a fault notification. In the case that a failure
occurs to the link or node covered by two neighbour protection
domains (e.g., link E-F), the protection domain close to the
source node is in charge of the failure. After receiving the NIS,
the merging node (i.e. A or E) immediately sends a wake-up
packet to activate the configuration of switching fabric in each
node along the corresponding backup segment of the
corresponding protection domain, and then the traffic can be
switched over to the protection path.

With the above signalling mechanism, it is clear that every
node must additionally keep track of the switching node of
each working path traversing through the node in the
corresponding protection domain. Fault localization [22] is
necessary such that the downstream node of a failure can
activate the failure recovery process, in which a higher
requirement on hardware responsiveness and control
complexity is needed. The largely increased computation
complexity in using SSP compared with path shared protection
is also a non-trivial problem that should be solved before the
scheme can be practically applied.
C Definition of Cost Functions

This section defines cost function and the link-state for
solving a protection segment of a working path segment (or
termed spare link-state). Given a network G(N,E) with N and E
being the set of nodes and directional links, respectively. The
capacity along link j, Ej ∈∀ , can be categorized into the
following three types:
1) Free capacity (denoted as fj), which is the link capacity that

can be reserved as either working or spare capacity.
2) Spare capacity (denoted as vj), which is the link capacity

reserved by some backup segment(s).
3) Working capacity, which is the link capacity already taken

by some working path, and cannot be taken for any use until
the corresponding working path is torn down.

The cost function for finding working path segment in the

 4

IEEE/ACM Transaction on Networking

k-th protection domain (denoted as Wk) with bandwidth b(W) is
as follows:

 if link is not reservable
() otherwise j

j

j
cw

b W c ε
∞⎧

= ⎨ ⋅ +⎩
 (1)

where cj is the cost for each unit of bandwidth taken by a
working path along link j, and ε is a small number defined as

Ec jEba /)(min),(∈=ε in this study. The link cost cj is
custom-designed, and can either be a constant (e.g., simply the
bandwidth demand of the connection request for each hop), or
take dynamic network traffic into consideration (e.g., the
maximum reservable bandwidth along link j). In this study, the
fact that link j is not reservable by Wk can only be due to b(W)
> fj , where fj is the free capacity along link j (as illustrated in
Fig. 4). The total cost of the working path is

j W (() j)b W c ε
∈

. The purpose of additionally imposing the
small number

⋅ +∑
ε in the cost function is to match the cost of

backup segments, which will be defined later.

Fig. 4. An illustration of categories of capacity along link
j.

For solving the backup segment of Wk, we need first to
define the corresponding spare link-state and cost function.
With the presence of Wk, the spare capacity along link j can be
further categorized into the following two types:
1) Sharable spare capacity (denoted as), which is the

link capacity that has been reserved by some other backup
segment(s), and is sharable to the backup segment of W

kW
jsh

k.
2) Non-sharable spare capacity (denoted as kW

jsb), which is
the link capacity that has been reserved by some other
protection paths, and is not sharable to the protection path of
W due to the SRLG constraint. Note that k kW W

j j jv sb sh= + ,
which is the total spare capacity along link j.

The protection path may traverse through link j in any one of
the following three states: (1) the case where the link has
sufficient sharable spare capacity (i.e., ()kW

jsh b W≥), in which
the backup segment can take this link with the smallest cost
(denoted as ε in this study); (2) the case where

()kW
j j j

kWf sh b W sh+ ≥ > , and the backup segment must partly
(or totally) take free capacity along this link with an extra cost.

In this case the spare link-state is () kW
j jb W sr c ε⋅ ⋅ + , where

kW
jsr is a [0,1] scaling parameter determined by the location of

Wk and will be defined later. (3) The link does not have
sufficient sharable spare capacity and free capacity (i.e.,

()kW
j jf sh b W+ <), in which the backup segment cannot

traverse through this link by any means. In this case the cost is
∞ . Due to the dependency between the working and spare
capacity in the network, the parameters kW

jsr , , and kW
jsh

kW
jsb cannot be defined until the presence of W.
In this study, kW

jsr is defined as 1 / (kW
j)sh b W− for any

link Ej ∈ . It is clear that kW
jsr is 1 if there is not any sharable

spare capacity available along link j and is approaching to 0 if
is close to b(W). In the former case (i.e., the case of kW

jsh
1kW

jsr =), the cost for the backup segment to take this link is
() jb W c ε⋅ + , which is the same as that for the working path

since all the reserved bandwidth has to be from the free
capacity region as shown in Fig. 4. The spare link-state for the
backup segment of Wk can be expressed as:

() if ()
 if () for ,

 if ()

k k k

k k

k

W W W
j j j j j

W W
j j

W
j j

b W c sr sh f b W sh
cp sh b W j E j W

sh f b W

ε
ε

⎧ ⋅ ⋅ + + ≥ >
⎪= ≥⎨
⎪ ∞ + <⎩

k∈ ∉

b W c sr

(2)

Fig. 5 shows the three situations defined in Eq. (2). In Fig.
5(b) and Fig. 5(c), the backup segment of Wk may partly take
the free capacity region and the sharable spare capacity region;
therefore, the link cost is

j j() kW ε⋅ ⋅ + , which is shown in
the first condition in Eq. (2). In Fig. 5(a), the backup segment
can have all b(W) in the sharable spare capacity region,
therefore, the cost is ε , as shown in the second condition in
Eq. (2). In Fig. 5(d), the link cost is infinity because the backup
segment of Wk cannot be supported by the residual capacity of
the link, which is shown in the third condition in Eq. (2). Note
that the protection path is assumed to take sharable spare
capacity along a link whenever there is any sharable spare
capacity available. If there is not enough sharable spare
capacity along this link to cover the total bandwidth demand
for protecting Wk (i.e., b(W)), the backup segment takes free
capacity after considering all the sharable spare capacity.

Note that the adoption of the small constant ε is to keep
the continuity between the first and second condition in Eq. (2).
In this case, the cost of link j is set to ε as

j ()kWsh b W= for
both of the conditions. This is also the reason we impose ε in
the cost function for the working path shown in Eq. (1), in
which the cost for the working and backup path segments to
take free capacity can match each other.

Our objective is to determine
j

 in Eq. (2) – the spare
link-state that defines the cost of the backup segment of W

kWcp

sh
k

passing through link j, in which
j

 is the only variable that
must be figured out (or equivalently,

kW

kW
jsb since

free capacity fj

spare capacity vj

working capacity

qj

link j

with W

free capacity fj

 sharable spare capacity shw
j

working capacity qj

link j

non-sharable spare capacity sbw
j

 5

IEEE/ACM Transaction on Networking

k kW W
j j jv sb sh= +). Note that and kW

jsh kW
jsb are network-wide

link-state specific to the presence of Wk. Any link kl W∈ is, in
turn, traversed by a set of working path segments denoted as

l
, which are also the working path segments currently

involved in a common SRLG of link l with W
D

k.

Fig. 5. The possible situations of a different cost function

de ty

The deriv

fined in Eq. (2). fj denotes the amount of “free spare capaci
while kW

jsh for “sharable spare capacity”

ation of kW
jsb and kW

jsh can also be expressed in a
m is aatrix form, which grace xpression for determining
spare capacity along each link by Y. Liu [15]. In this case, we
define the working and protection path-link incidence matrices
as kW

ful e

A and kWB , in which kWA is a ED
kW × array

cont g all th rking path seg volved in a
common SRLG (i.e., take any common physical link) with W

ainin e wo ments that are in
k,

while kWB is an ED
kW × array containing all backup

segments corresponding to the working paths segments in
kWD

Here we define ∪
kLWl

lkW DD
∈

= , where ∪ is a union operation.

The spare p atrix forovision m r Wk is defined as
kWTkWkW AB ⋅=)(, which is a C EE × matrix. Applying a

AX operation upon each row of kWC will yield a M E×1
vector kWSB , which keeps the amount of non-sharable spare
capacity along each link provided with the working path
segment Wk. The E×1 vector kWSH , which keeps the
amount of sharable spare capacity alo g each link provided
with the working path segment W

n
k, can thus be derived by

referring to the relationship k kW WSH V SB= − , where V is a
E×1 vector recording the amount o capacity along

each link.

III LINEAR F

f spare

ORMULATION FOR SEGMENT

This section in for the segment
sh

Let the d E is the
set of node pectively.
Le

SHARED PROTECTION

troduces a linear formulation
ared protection problem. Our approach is to find a path Q,

called mass protection path, which is composed of all the
backup segments and some links along the working path. A
simple example is shown in Fig. 6, where Q is (s-a-b-c-e-d).
The first protection domain is formed by the working and
protection segments (s-c-b) and (s-a-b), respectively; while the
second is formed by (c-b-d) and (c-e-d), respectively. The

allowance of overlapping between the working segments of
two neighbour protection domains is to explore the largest
design space so as to guarantee the optimality of the derived
solution. Note that Q may contain loops to reflect the fact that
spare capacity sharing can happen between two protection
segments of different protection domains.

b(W)
b(W)

b(W) b(W) fj

v

sh

Fig. 6. Design of mass protection path Q.

network be denoted as G(N,E), where N an
s and directional links in the network, res

t the source and the destination of the upcoming connection
request, W, be denoted as s and d. Three residual graphs are
defined to facilitate the solving of this problem, each of which
carries one or a few variables for the identification of the
working and protection segment-pairs. The graph for solving
the working segments is denoted as Gw(N,Ew) and is composed
of links with () for j wf b W j E≥ ∈ (x, lx and δx variables in the
following formulas are assigned to this graph). The second
residual graph , E is denoted as Gp(N p), which is to facilitate
solving the protection segments. We need this graph to record
the spare link-state because working and protection path take
different suites of link-state with shared protection. This graph
is composed of the links where the amount of free capacity fj
plus that of the spare capacity vj is larger than or equal to b(W).
(i.e., b(W) ≤ fj + vj for pEj ∈) (δy variable in the following
formulas is assigned to this graph).

The third residual gra ph G’
w in a reversed direction.

Th

p(N, E’p) is composed of all the
links in Ep along with the links of E

e inclusion of the links of Ew in a reverse direction into E’p
is called arc-reversal transformation similar to the graph
technique adopted in the Suurballe’s algorithm [19]. With
G’p(N, E’p), we will be able to handle the reverse arcs caused
by the overlapping between Q and W, such that the route of Q
can be identified. The variables defined in this graph are y’ and
ly’, which will be discussed in detailed later. It is clear that we
have the following relationship:)(wpp EreversedEE ∪= .
Therefore, E’p contains forward arcs denoted as ()a b,

JJJG
, which

are due to the links of Ep, as well as d
as ()a b

 the reversed ar denotecs
,
HJJJ

, which are due to the reversal of link (a, n Eb) i w. In

j

j
W

sh Wk = 0

b(W) ≤ fj

b(W)⋅c +ε

sh Wk < b(W)

sh k + f ≥ b(W)

 b(W) ⋅ sr Wk ⋅ce+ε

b(W) > f + sh Wk

∞

sh Wk ≥ b(W)

ε
cost:

(a (d

j

e
(c)

j

W
j j

j

j jj

) (b))

s d

W

Q

b c

e

a

 6

IEEE/ACM Transaction on Networking

the latter case, the reversed links direct from node b to node a
for

wE . The transformation yields a fact that if there is a
bi-directional link between node a and b with the amount of
free larger than or equal to b(W), then G’

ba ∈,

capacity p will have
four links between node a and b (i.e., a b,

JJJG
, a b,
HJJJ

; b a,
JJJG

, b a,
HJJJ

),
in which two of them direct to node b (i.e., a

JJJG
; bb, a,
HJJJ

) and the
other two direct to node a (i.e., b a,

JJJG
;

J
). the ou f

free capacity is less than b(W), and the am free plus
spare capacity is larger than or equal to b(W) (i.e.,

()j j jf b W f v< ≤ +), then G’

a b,
HJJ

 If am nt o
ount of

transform

e implementation,
an

p will have two directional links
between a and b (i.e., a b,

JJJG
; b a,
JJJG

); otherwise, there is no link
nd b in G’between node a a p. Please refer to Fig. 7 for an

illustration of the graph ation.
In the formulation, all the three graphs (Gw, Gp and G’p) are

considered and indexed in an array during th
d we have to keep track of the index of each directional link

on different graphs even though they are in the same direction
and at the same physical location. For example, we must
distinguish between () pa b E′, ∈

JJJG
and , wa b E∈ , and

between 'pa b E, ∈
HJJJ

and , pa b E∈ , and between , pa b E∈ and
, wa b E∈ the array kee exes, in ping the ind of the links.

Working
Capacity

Spare
Capacity

Free Capacity

Link

Working
Capacity

Spare
Capacity

Free Capacity

Link (a,b)
Fj G

Vj

w

if B(W) Fj

Gp

if B(W) Fj + Vj

)(a,b

(a,b)

(a,b)

Working
Capacity

Spare
Capacity

Free Cap

Link

acity

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

wacity

)
Fj G

if B(W Fj

Gp
if B(W Fj + Vj

)(a,b

(a,b)

a b

Link

Link

Link

a b

a b

(a,b)Link

Working
Capacity

Spare
Capacity

Free Cap

Link

acity

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

Link

Link

Link

a b

a b
≤

≤

acity

)
Fj

Link ≤

Working
Capacity

Spare
Capacity

Free Cap

Link

acity

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

wacity

)
Fj G

if B(Fj

Gp

if B() Fj + Vj

)(a,b

(a,b)

(a,b)

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

wacity

)
Fj G

if B(Fj

Gp

if B(Fj + Vj

)(a,b

(a,b)

(a,b)

Working
Capacity

Spare
Capacity

Free Cap

Link

acity

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

wacity

)
Fj G

if B() Fj

Gp
if B() Fj + Vj

)(a,b

(a,b)

a b

Link

Link

Link

a b

a b
≤

≤

≤

(a,b)Link ≤

pG
),(ba

Working
Capacity

Spare
Capacity

Free Cap

Link

acity

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

wacity

)
Fj G

if B(W) Fj

Gp

if B(W) Fj + Vj

)(a,b

(a,b)

(a,b)

Working
Capacity

Spare
Capacity

Free Cap

Link

acity

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

wacity

)
Fj G

if B(W Fj

Gp
if B(W Fj + Vj

)(a,b

(a,b)

a b

Link

Link

Link

a b

a b

(a,b)Link

Working
Capacity

Spare
Capacity

Free Cap

Link

acity

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

Link

Link

Link

a b

a b
≤

≤

acity

)
Fj

Link ≤

Working
Capacity

Spare
Capacity

Free Cap

Link

acity

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

wacity

)
Fj G

if B(Fj

Gp

if B() Fj + Vj

)(a,b

(a,b)

(a,b)

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

wacity

)
Fj G

if B(Fj

Gp

if B(Fj + Vj

)(a,b

(a,b)

(a,b)

Working
Capacity

Spare
Capacity

Free Cap

Link

acity

Working
Capacity

Spare
Capacity

Free Cap

Link (a,b

Vj

wacity

)
Fj G

if B() Fj

Gp
if B() Fj + Vj

)(a,b

(a,b)

a b

Link

Link

Link

a b

a b
≤

≤

≤

(a,b)Link ≤

pG
),(ba

Fig. 7. Graph transformations for the links in G, which yields

the graphs Gw, Gp and G’p, respectively.

formulation defined in
ea

) (,)
() ()

w p

a b a b u v u v u v
E u v E

b W c x b W c r yε
∈ ∈

⋅ ⋅ + ⋅ ⋅ + ⋅∑ ∑

where ca,b is the cost per unit of working bandwid rve
link (a,b), which is equivalent to cj in Eq. (1),

To introduce the target function of the proposed ILP
, the following two flow indicators are

ch graph of Gw and G’p: xa,b is a binary variable with a size of
|Ew| defined in graph Gw, while

,u vy′ is an integer variable
ranged [0..kmax] with a size of |E’p| defined in graph G’p, where
kmax is the maximum number of protection domains that can be
possibly handled in the problem. The target function is as
follows:

()
(,

Minimize
a b

 (3)
, , , , ,

th to rese
 ε is a small

constant that can be set such that baEbap cE
p ,),(min ∈<⋅ε ,

which is same as that defined in Eq. (2). yu,v is a irror binary
variable of

vuy ,′ to facilitate the calcul t
caused by the protection segments, and will be further
discussed lat

Each of x

m
ation of the total cos

er.

w

a,b and yu,v indicates the number of times the

orking and mass protection paths traverses
wEba ∈),(and

(,) pu v E′∈ , respectively. The reason of setting y’ ger
a binary variable is that path Q, which is composed

of the protection segments of all the protection domains, may
have loops in case the protection segments of two different
protection domains traverse through the same link. Therefore,
y’

u,v an inte
instead of

u,v may larger than 1. Therefore, the concatenation of all links
with xa,b = 1 yields W, while the concatenation all the links
with y’u,v ≥ 1 forms Q. It is clear that the overlapped links
between W and Q should not be considered when calculating
the cost for the corresponding protection segments in the target
function. Besides, we should count once for each link traversed
by Q even if Q traverses any link by multiple times due to the
possible spare capacity sharing between protection segments of
any two protection domains for the connection. Therefore, a
transformation is required from the integer variable

vuy ,′
(defined in G’p) into a new binary variable, denoted as yu,v

 for (,) , (,)p pu v u v E u v E

(defined in Gp). This transformation can be simply done by
filtering out those links taken by Q which are defined in G’p
but not in Gp. This filtering can be done with the following
linear formula:

max , 0u vk y y ,
′ ′∀ ∈ ∀ ∈

JJJG

In the transformation, yu,v is zero if is zero, and is 1 if

⋅ − ≥JJJG

,u vy′JJJG

,u vy′JJJG >0. As for ru,v, it is for the protection segment taking
unit of spare capacity along link (a,b), which depends on

the value of y
per-

u,v and has the same physical meaning as that of
the parameter W

jsr defined in Eq. (2) if link (u,v) is equivalent
to link j. This ment will be discussed and verified later in
this section.

The target fu

state

nction is subject to the following constraints:

1 for
0 otherwise w w

a b b a
a b E b a E

, ,
(,) (,)

1 s a
x x d a a N

∈ ∈

⎪
==⎧

− = − == ∈⎨
⎪
⎩

∑ ∑ (4)

N ∈ (5)

Each Eq. (4) and (5) is the flow conservatin constraint for the

exclusive in

, ,
(,) (,)

1
1 for
0 otherwise p p

a b b a
a b E b a E

s a
y y d a a

′ ′∈ ∈

==⎧
⎪′ ′− = − ==⎨
⎪
⎩

∑ ∑

working and mass protection paths, respectively.
It is important to note that xa,b and

,a by′JJJG will be
terms of the physical links they take. wever, a link can be
taken by

.a by
 Ho

′HJJJ in a reversed direction only if xa,b pass through it.
Besides, h reversed arc can be used only once since the
algorithm only allows two working segments overlapped. The
above statements can be formulated into the following two
constraints:

eac

 7

IEEE/ACM Transaction on Networking

max , max,

,

 for () , (,)

 for (,) , (,)

a b w pa b

a b w p

k x y k a,b E a b E

,a bx y a b E

′⋅ + ≤ ∀ ∈ ∀ ∈

′≥ ∀ ∈ ∀

JJJG

HJJJ

JJJG

HJJJ
a b E

′

′∈

E

∈

N∈

(,) ws b E∈

k x k x k⋅ + ⋅ − ⋅

where
.a b

 represents the reversed link of E’y′HJJJ p. Under the
above two constraints, Q has to be disjoint from W except for
those arcs of W being reversed (see Fig. 6). These two
constraints not only assert the disjointedness of the working
and the corresponding protection segment, but also facilitate
the indication of the switching/merging nodes for each
protection domain along W.

A pair of variables, lxa,b (with a size of |Ew|) and ly’a,b (with a
size of |E’p|), is assigned to each link along W and Q,
respectively, such that the first link from the source has a label
of 1; and if a protection domain ends or starts at a node, the
labels of the following arcs will be increased by 1. This
labelling method is similar to that proposed in [7]. Let kmax be
the number of protection domains with an upper bound |N|-1.
In solving the formulation, the value of K should be set to the
upper bound: |N|-1 to guarantee the derivation of the optimal
solution. If the value of kmax is set less than kopt (i.e., the
number of protection domain in the optimal solution), the LP
solver cannot return an optimal solution although we have a
smaller problem size.

For lxa,b, we have the following constraints:
max , ,(2 1) 0 for ()a b a b wk x lx a,b⋅ − ⋅ ≥ ≥ ∀ ∈ (6)

, , , ,
(,) (,) (,) (,)

max , max , max
(,) (,)

2

w w p p

w w

a b b a a b b a
a b E b a E a b E b a E

a d a s a d a s

a b b a
a b E b a E

a d a s

lx lx y y

k x k x k a N

∈ ∈ ′ ′∈ ∈
≠ ≠ ≠ ≠

∈ ∈
≠ ≠

′ ′− ≥ +

+ ⋅ + ⋅ − ⋅ ∀

∑ ∑ ∑ ∑

∑ ∑

JJJG JJJG
JJJG JJJG

 (7)

, ,
(,) (,)

, ,
(,) (,)

w w

p p

a b a b
a b E b a E

a d a s

a b b a
a b E b a E

a d a s

lx lx

y y a

∈ ∈
≠ ≠

′ ′∈ ∈
≠ ≠

− ≤

′ ′+ ∀

∑ ∑

∑ ∑JJJG JJJG
JJJG JJJG

 (8)

, 1 s blx b N= ∀ ∈∑ (9)

The constraint in Eq. (6) ensures that lxa,b is upper-bounded
by (2kmax-1), and is nonzero only if W passes through (a,b). To
verify Eq. (7) and Eq. (8), the following four situations are
defined for a node (not the source or destination) taken by W:
(a) Q merges back to W at the node; (b) Q switches out of W at
the node; (c) Q merges back and switches out of W at the node;
(d) otherwise. Eq. (7) and (8) behave as a special type of flow
conservation constraint upon the net change of lxa,b for node a
in the network, which is denoted at the left-hand side of the
equations. In Eq. (7), the value of lxa,b of node a along W
increases by 1 in the case of situations (a) and (b), and

increases by 2 in the case of situation (c), and is unchanged
otherwise. The constraint on the net change in terms of lxa,b has
a lower bound specified at the right-hand side of the equation,
where the term

max , max , max(,) , (,) ,w w
a b a ba b E a d a b E a s∈ ≠ ∈ ≠

2∑ ∑

y′

checks if node a is taken by W. It is clear that the term is 0 if
node a is traversed by W, and is -2kmax otherwise. Therefore, if
node a is not taken by W, Eq. (7) automatically holds.

The four cases specified in Eq. (7) are presented as follows.
In the case of (a), the increase of lxa,b is 1 since

,(,) ,p a ba b E a d′∈ ≠
0=∑ JJJGJJJG y′ = and

,(,) ,p b ab a E a s′∈ ≠
1∑ JJJGJJJG

y′

 (since Q merges
back to W at node a). In case (b), the increase of lxa,b is still 1
because

,(,) ,p a ba b E a s′∈ ≠
0=∑ JJJGJJJG y′ and

,(,) ,p b ab a E a d′∈ ≠
1=∑ JJJGJJJG

y y

. In
situation (c), increase of lxa,b is 2 since

, ,(,) , (,) ,p pa b b aa b E a d b a E a s′ ′
1

∈ ≠ ∈ ≠
′ ′= =∑ ∑JJJG JJJGJJJG JJJG

E

. If node a is neither a
switching nor a merging node (but it is taken by W), the
right-hand-side of Eq. (7) becomes 0, in which no change upon
lxa,b is required.

Eq. (8) basically has the same working principles as Eq. (7)
except that when node a is not taken by W, the right-hand side
becomes 0 instead of -2kmax. Both Eq. (7) and (8) constrain the
net change of the value of lxa,b to be either 0, 1, or 2, for any
node a taken by W, depending on how path Q switches out and
merges back to W. Eq. (9) sets lxa,b to 1 if node a is the source
node.

For ly’a,b, we have the following constraints:

max , ,(2 1) 0 for ()a b a b pk y ly a,b′ ′ ′⋅ − ⋅ ≥ ≥ ∀ ∈ (10)

, ,
(,) (,)

0
p p

a b b a
a b E b a E

a d a s

ly ly a N
′ ′∈ ∈

≠ ≠

′ ′− ≥ ∀ ∈∑ ∑ (11)

() (), , , ,, ,
(,) (,) (,) (,)

max , max , max
(,) (,)

2 2
max , max ,

(,) (,)

 2

p p w w

p p

w w

a b b a a b b aa b b a
a b E b a E a b E b a E

a d a sa d a s

a b b a
a b E b a E

a d a s

b a a b
b a E a b E

a s a

ly ly x y x y

k y k y k

k x k x

′ ′∈ ∈ ∈ ∈
≠ ≠≠ ≠

′ ′∈ ∈
≠ ≠

∈ ∈
≠ ≠

′ ′ ′− ≥ − + −

′ ′+ ⋅ + ⋅ − ⋅

+ ⋅ + ⋅

′∑ ∑ ∑ ∑

∑ ∑

∑

HJJJ HJJJ

2
max2

d

k a N− ⋅ ∀ ∈∑

(12)

, ,
(,) (,)

, ,, ,
(,) (,)

() ()

p p

w w

a b b a
a b E b a E

a d a s

a b b aa b b a
a b E b a E

a d a s

ly ly

x y x y a

′ ′∈ ∈
≠ ≠

∈ ∈
≠ ≠

′ ′− ≤

′ ′ N− + − ∀ ∈

∑ ∑

∑ ∑HJJJ HJJJ

 (13)

,
(,)

1 a b
s b E

ly b N
′∈

′
p

= ∀ ∈∑ (14)

The constraint in Eq. (10) ensures that ly’a,b is nonzero only if q
passes through arc (a,b). The constraint in Eq. (11), (12) and
(13) ensures that the value of ly’a,b on path Q increases by 1
only if Q merges back to W or Q switches out of W at node a.
The idea behind Eq. (11), (12) and Eq. (13) is similar to that of
Eq. (7) and Eq. (8). The only difference is that instead of the

 8

IEEE/ACM Transaction on Networking

forward arcs of Q (denoted as
,a by′JJJG), the term (xa,b –

,a by′HJJJ) is
used, which is non-zero for link (a,b) along W not taken by Q.
The constraint in Eq. (14) is to set ly’a,b as 1 if node a is the
source node, and that there would be only a single protection
link stretching out of the source node. Please refer to Fig. 8 for
an explicit illustration for the variables formulated above. It
can be easily observed that the maximum of lxa,b is 2kmax – 1;
and the maximum of ly’a,b is less than

max ,(2 1) a bk y′− ⋅ even if
Q have loops.

With lx and ly’ link labels, path W is divided into segments
such that each link along it is covered by at least one protection
segment. This effort introduces max wk E⋅ and

max pk E⋅
link-domain incidence binary variables denoted as δxk

a,b and
δyk

a,b, which is 1 if link (a,b) is traversed by the working and
protection segment of the k-th protection domain, respectively.
Note that the only variable defined in graph Ep is the variable

in the formulation. We can alternatively define the
variable upon E’

k
bay ,δ

k
bay ,δ p instead of having a new graph Ep, in

which the formulation turns out to take only two residual
graphs. Although it is a way more tractable to implement, there
would be at most max wk E⋅ variables unnecessarily induced
due to the fact that we do not need to define on the
reversed links of E’

k
bay ,δ

p.

Fig. 8. An example showing the variables xa,b, y’a,b, lxa,b, and
ly’a,b. It is zero for the parameters of a link not shown on the

figure.
For , the following constraints are introduced: k

bay ,δ
max

,
1

2 1 (,)
k

k
a,b pa b

k
(k) δy ly a b E

=

′− ⋅ = ∀ ∈∑ JJJG (15)

max

,
1

' (,)
k

k
a,b pa b

k
δy y a b E

=

= ∀ ∈∑ JJJG (16)

, max0 1~ (,)k
a b py k k a bδ≤ ∀ = ∀ ∈E (17)

(), , max , max
(,) (,) (,)

(2 1) (2 1)

w p p

k k
a b a b a b b a

a b E a b E b a E
lx x k y k y

a N

δ δ
∈ ∈ ∈

− + ≤ − ⋅ − − ⋅

∀ ∈

∑ ∑ ∑ , (18)

()max , max , , ,
(,) (,) (,)

(2 1) (2 1)

p p w

k k
a b b a b a b a

a b E b a E b a E
k y k y lx x

a N

δ δ
∈ ∈ ∈

− ⋅ − − ⋅ ≤ +

∀ ∈

∑ ∑ ∑ (19)

Eq. (15) can be easily verified by observing Fig. 8, where the
value of ly’a,b on Q of the first protection domain is 1; and in
the second protection domain ly’a,b is 3; and in the k-th
protection domain ly’a,b is 2k – 1. Eq. (15) ensures that the
number of traversals of path Q upon each link is correctly
counted. It is clear that Eq. (15), Eq. (16) and Eq. (17) set
δyk

a,b=1 only when , 2a bly k 1′ = − . Eq. (18) and Eq. (19) are
flow conservation constraints for δyk

a,b since
,(,) w

b ab a E∈
lx∑ is 0

for all nodes accept for the ones along W. This ensures, that
δyk

a,b to be a flows starting from a node along W with label
lx=2k-1-1 (an incomming arc has the label) and terminate at
a node along W with label lx=2k-1+1 (an outgoing arc has the
label).
For δxk

a,b, the following constraints are introduced:
max

, , ,
1

1 (2 1) 1 ()
k

k
a b a b wa b

k
k x lx ly a,bδ

=

′− ≤ ⋅ − ⋅ − − ≤ ∀ ∈∑ HJJJ E (20)

max

, , ,
1

 ()
k

k
a b a b wa b

k
x x y a,b Eδ

=

′= + ∀ ∈∑ HJJJ (21)

, , max(2 1) 1 1 ~ ()k
a b a b wk x lx k k a,bδ⋅ − ⋅ ≤ + ∀ = ∀ ∈ E (22)

, max0 1 1 ~ ()k
a b wx k k a,bδ≤ ≤ ∀ = ∀ ∈ E (23)

Eq. (20) can be easily verified by the following argument. The
value of lxa,b of link (a,b) taken by W in the first protection
domain is either 1 or 2, depending on whether or not there is
overlapped link(s) between the working segments of the first
and the second protection domain; while on the links of the
k-th protection domain, we have 2k – 2 = (2k – 1) – 1 ≤ lxa,b
≤ 2k = (2k – 1) + 1. Since the overlapped link(s) of two
neighbour working segments is counted twice in the term ,
while the corresponding reversed arcs of G’

k
bax ,δ

p are taken by Q.
This rule is formulated as Eq. (21). If the reversed arcs of W in
G’p is used by Q, then lxa,b =

,a b
; otherwise

,a bly′HJJJ ly′HJJJ = 0. With
this,

k ,(2 1) k
a bk xδ− ⋅∑ is less than lxa,b +

,a bly′HJJJ + 1, and is
larger than lxa,b +

,a bly′HJJJ - 1 as shown in Eq. (20). To set the
realtionsship of three variables (, lxk

bax ,δ a,b and
,a bly′HJJJ) with

linear equations a third linearly independent equation is needed.
Thus Eq. (22) is formulated, which trivially holds and
independent form Eq. (20), (21).

The constraint upon the variable defined in the target
function is as follows:

,u vr

,
,

, , , ma

,
,

1 1 ~
()

() , () ()

a b
u vk k

a b u v u v

a b
w p u v u,v

sh
x y r k k

b W
a,b E u,v E , sh f b W

δ δ+ − − ≤ ∀ =

∀ ∈ ∀ ∈ + ≥

x ,

E

 (24)

, 0 (,)u v pr u v≥ ∀ ∈ (25)
Here the SRLG constraint is considered using a pre-defined

 9

IEEE/ACM Transaction on Networking

pw EE × matrix recording , where

wp , which can be prepared off-line and
behaves as an upper bound of spare capacity along link (u,v)
sharable by the backup segment if the corresponding working
segment passes through link (a,b). Eq. (24) ensures that when
link (a,b) and (u,v) is taken by the working and protection
segments in the k-th protection domain, respectively, the
resultant amount of scaling (i.e., r

ba
vush ,

,

Ea,bEvu ∈∈)(and),(

u,v) is at least a b
,
,1 / ()u vsh b W−

(since). If ≥ b(W), it means that there is
sufficient sharable spare capacity along link (u,v) that can be
taken to protect any additional b(W) units of working capacity
along link (a,b). In this case, r

2,, =+ k
vu

k
ba yx δδ ba

vush ,
,

u,v = 0, and the only cost imposed
upon the consumption of the sharable spare capacity along link
(u,v) isε , as shown in the target function.

The following constraint imposes a bandwidth limitation
upon the consumption of spare capacity.

, , max

,
, ,

1 1~ , (,) ,

(,) , and ()

k k
a b u v w

a b
p u v u v

x y k k a b

u v E sh f b W

δ δ+ ≤ ∀ = ∀ ∈

∀ ∈ + <

E (26)

Eq. (26) ensures that if ,
, , ()a b

u v u vsh f b W+ < , link (a,b) and (u,v)
cannot be used at the same time for a working and protection
segment in the same protection domain. Note, ru,v is
automatically transformed from E’p to Ep such that values of
ru,v at those reverse arcs in E’p are set to zero.

It is clear that the adoption of the second graph has
successfully defined all the three states for the protection path
to take spare capacity, which are the case of ,

, ()a b
u vsh b W≥ , the

case of ,u v u v
,
, ,

,()a b a b
u vsh f b W sh+ ≥ >

, ()a b

, and the case of

, ,u v u vsh f b W+ <

)

. The former two cases are jointly defined by
Eq. (24) and Eq. (25), where ru,v is constrained no smaller than

,
,1 / (a b

u vsh b W− and 0 in the two cases, respectively; while the
latter case is defined by Eq. (26), which prohibits the traversal
of any protection segment through (u,v) if there is no sufficient
capacity along the link.

To sum up the above, the shared protection problem has been
formulated with the same spare link-state defined in Eq. (2), in
which ru,v is equivalent to provided that link (u,v) is
equivalent to link j. With the ILP formulation, we claim that all
the three states for the protection path to take spare capacity
can be well defined. Readers are encouraged to compare the
resultant cost function adopted in the ILP formulation with that
defined in Section II. It can also be observed that the use of the
residual graphs E

W
jr

w and Ep along with the constraints of Eq. (24),
Eq. (25) and Eq. (26) has imposed a bandwidth limitation
constraint along each link upon the selection of working and
protection segment of each protection domain, respectively.
Without such a design, the extra constraint on the feasibility of
spare capacity resource sharing and the link bandwidth
limitation for protection paths can never be defined at the same
time by using a single graph.

The number of variables in an ILP formulation directly

influences the computation time required to solve the
formulation. In this formulation, the number of variables is

max maxw p
, and the number of rows in the

constraint matrix (where the linear formulation can be
expressed in a general form as

(4) (3)k E k E+ ⋅ + + ⋅

A⋅x=b with a target to minimize
x⋅c) is: NEE pw8 plus the SRLG constraints shown
in Eq. (24) and (26). Therefore, the number of rows in the
matrix

⋅+⋅+⋅ 119

A has an upper bound

max w p w p8 9 11k E E E E N⋅ ⋅ + ⋅ + ⋅ + ⋅ . The computation time and
memory occupation for each network topology adopted in this
study will be shown in Section V.

IV A HEURISTIC APPROACH – CASCADED
DIVERSE ROUTING (CDR)

A novel heuristic algorithm called Cascaded Diverse Routing
(CDR) is introduced in this section to perform survivable
routing for segment shared protection. In general, the efforts of
pre-defining a set of candidate switching/merging node-pairs
and the adoption of the Iterative Two-Step-Approach (ITSA)
algorithm [12] distinguish this heuristic from its counterparts.

With CDR, the switching and merging nodes of protection
domain i is denoted as PSL(i) (which is the abbreviation of
Path Switch LSR, where LSR is Label Switched Router in the
context of Multi-Protocol Label Switching) and PML(i) (which
is the abbreviation of Path Merged LSR), respectively. As an
example shown in Fig. 9, the second protection domain has
node E (or J) as PSL (or PML), which switches over (or merges
back) the affected traffic flows originally along the working
segment E-F-G-H-I as any failure occurs upon the working
segment. The heuristic is characterized by the fact that the
PSL-PML pairs are pre-defined to make the design space
smaller. The algorithm contains the following three steps:
Step-1: Select the shortest M alternate paths from the

k-shortest paths in terms of hop count for each node-pair.
Step-2: Define a series of PSL-PML pairs along each alternate

path with a fixed distance D. Step (1) and (2) can be
performed before the connection request arrives (or off-line).
The distance D between PSL(i) and PML(i) in terms of hop
count is called diameter of protection domain i.

Step-3: As a connection request arrives, the ITSA algorithm is
invoked upon a set of PSL-PML pairs along an alternate
path. This is then iteratively performed along each alternate
path until a feasible solution is derived.

A B C D E F G H I J K L M N

W2

Protection domain 1 Protection domain 2 Protection domain 3

W1
S1 S2

Fig. 9. An illustration of protection domains and PSL-PML

pairs for W1.

 10

IEEE/ACM Transaction on Networking

In this study, the PSL-PML pairs are assigned to an alternate
path according to the following pseudo-code. First, the nodes
with a nodal degree larger than 2 is labelled from 1 to N’,
where N’ is the number of nodes with a nodal degree larger
than 2 along the alternate path.

PSL(0) = PML(0) := 0;
overlap := 0; /* a flag which is 1 if the working segment of the
current protection domain overlaps with that of its immediate
upstream protection domain, and 0 otherwise; */
PSL(1) := 1; /* the source node is the PSL of the first protection
domain; */
i := 1; /* index for protection domains; */
For n := 2 to N’

If (n == PML(i – 1) – overlap + D),
PML(i) := n; i++;
If (n = N’) Break; /* the whole job is complete; */ End If;

Else If (ND(n) >= ND(n – 1))
PSL(i) := n; overlap := 0;

/* ND(n) returns the nodal degree of node n, and both PSL(i)
and PML(i-1) are at node n; */
Else

PSL(i) := n-1; overlap := 1;
Else If (PML(i-1) – overlap +D > N’)

/* the diameter of the last protection domain is smaller
than D; */

 PML(i) := N’; Break;
End If;

End For;
In the above PSL-PML assignment algorithm, the working

segments of two neighbour protection domains can overlap
with each other either by a single node (the case with overlap =
0) or by two nodes and a link (the case with overlap = 1). The
node with a higher nodal degree will be prioritized to serve as a
PSL. This algorithm is simple but can efficiently determine the
PSL-PML pairs framed by an alternate path.

In CDR, the ITSA algorithm is adopted to find the working
and backup segments for each PSL-PML pair each alternate
path, in which the cost function defined in Eq. (1) and Eq. (2)
are adopted. It is clear that each alternate path is to “frame” the
assignment of a set of PSL-PML pairs, which yields a fact that
the working segment in protection domain i does not
necessarily coincide with the segment between PSL(i) and
PML(i) of the alternate path.

CDR yields merits in terms of network practical
implementation. Due to the independency of the computation
effort possibly held in the PSL of each protection domain, CDR
incorporate with a distributed-control environment in such a
way that each pre-assigned PSL instead of the source node of
the connection takes the responsibility of calculating the
working and protection segments in the corresponding
protection domain. This design can release workload of the
edge routers by possibly addressing intelligence upon the glass

nodes in the networks. In addition, the segmentation of the
whole diverse routing process can help reducing the total
computation complexity. Since each PSL-PML pair along an
alternate path is pre-defined, some of the computation tasks
can go through a look-up-table process, such as the calculation
of the SH matrix defined in Section II.C. Due to the fixed and
relatively short distance between a PSL-PML pair, the number
of iterations allowed for the ITSA algorithm can be much
smaller than the case where an end-to-end working and
protection path-pair is calculated, which further reduces the
computation complexity.

V PERFORMANCE EVALUATION

We conduct experiments to verify the proposed ILP model
and the CDR algorithm on the networks topologies as listed in
Table I. The experiment is divided into two parts in terms of
their objectives. The first part investigates the diameter for
CDR that can achieve the best performance in terms of
blocking probability in each network topology. The second is
aimed at comparing the CDR algorithm with the other reported
schemes. In the second part, we will also examine the
optimality that is achievable by each scheme relative to the
results derived from solving the ILP formulation.

Table I
Topology of the networks adopted in the simulation. All the

topologies are two-connected mesh networks.
Network N0 N1 N2 N3 N4

No. of nodes 10 22 30 79 100
No. of links 28 88 126 216 358

Nodal degree 2.8 4.0 4.2 2.73 3.58

The experiment is arranged as follows. Each directional
link in the networks contains 32 units of bandwidth. We
consider the capacity efficiency in terms of blocking
probability for the dynamically arrived connection requests (of
a single bandwidth unit) following the Poisson model and with
a holding time defined in an exponential distribution function.
In the experiment arrangement, node-pair (i,j) has a traffic load

)/(,,, jijiji µληρ ⋅= , where
jiji ,, , µλ are arrival and departure

rate upon the node-pair (i,j), respectively. Without loss of
generality,

ji ,µ is set to 1, while
ji ,λ is a random number

between 0.5~1.5 for every node-pair (i,j) such that each
node-pair may be subject to different amount of path
connection setup demand. The scaling parameter η represents
the level of traffic load in the network with the unit of Erlang.
Each data point in the figures is the blocking probability for
100,000 connection requests using a specific survivable routing
algorithm. The confidence interval is within 0.1% if we take
the result of 100 connection requests as a trial.
A Derivation of the Best Diameter for CDR

With CDR, since the diameter of protection domains may

 11

IEEE/ACM Transaction on Networking

influence the total throughput, we first derive the best diameter
for achieving the best performance in each network topology
through simulation. Fig. 11 shows the simulation results, where
“CDR(D)” is the CDR scheme taking the diameter of each
protection domain as D; and the “Path” is the scheme with the
number of protection domains as 1 for each connection. With
CDR, the ITSA algorithm is invoked for solving the working
and protection segment pair in the corresponding protection
domain. In this simulation, the number of alternate paths
pre-defined for each node-pair is 10 (i.e., M = 10), and the
number of iterations allowed for the ITSA algorithm is 10, 10,
20, and 25 for the network N1, N2, N3, and N4. To achieve
better computation efficiency, the algorithm returns either
when 6 iterations are performed or when the least-cost
working-protection segment-pair is derived. If the algorithm
fails to find a feasible working and protection segment pair
within 6 iterations in any protection domain along a
pre-defined alternate path, it will drop the results/calculation
processes of all the other protection domains framed by the
alternate path, and proceed to inspect the next alternate path. If
the algorithm fails to find a solution after inspecting all the
alternate paths, a blocking is announced for the connection
request. The parameter cj in Eq. (1) is defined as: cj = 1/rcj,
where rcj is the residual bandwidth along link j.

The experiment results are shown in Fig. 10. It is clear that
the path shared protection scheme is outperformed by CDR
with any size of protection domain. With the small 22-node
and 30-node networks in which the average distance between
each S-D pair is 2.49 and 2.71, respectively, the best
performance in capacity efficiency is achieved in the case
CDR(2). With the 79-node and 100-node networks in which
the average distance between each S-D pair is 6.57 and 9.5,
respectively, the best capacity efficiency is achieved in the case
CDR(3) and CDR(4), respectively. It is observed that the best
diameter of protection domains varies as the network size is
different.

Blocking Prob. vs. Load (22-node)

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

SLSP2
SLSP3
SLSP4
Path-based

η

Blocking Prob. vs. Load (22-node)

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

CDR2
CDR3
CDR4
Path-based

η

Blocking Prob. vs. Load (22-node)

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

SLSP2
SLSP3
SLSP4
Path-based

η

Blocking Prob. vs. Load (22-node)

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

SLSP2
SLSP3
SLSP4
Path-based

η

Blocking Prob. vs. Load (22-node)

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

CDR2
CDR3
CDR4
Path-based

η

Brocking Prob. vs. Load (30-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

SLSP2

SLSP3
SLSP4

Path-based

η

Blocking Prob. vs. Load (30-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

CDR2

CDR3
CDR4

Path-based

η

Brocking Prob. vs. Load (30-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

SLSP2

SLSP3
SLSP4

Path-based

η

Brocking Prob. vs. Load (30-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

SLSP2

SLSP3
SLSP4

Path-based

η

Blocking Prob. vs. Load (30-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

CDR2

CDR3
CDR4

Path-based

η

(a) (b)
Blocking Prob. vs. Load (79-node)

0.10%

1.00%

10.00%

100.00%
1.5 2 3 4 5

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

SLSP2
SLSP3
SLSP4
SLSP5
Path-based

η

Blocking Prob. vs. Load (79-node)

0.10%

1.00%

10.00%

100.00%
1.5 2 3 4 5

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

CDR2
CDR3
CDR4
CDR5
Path-based

η

Blocking Prob. vs. Load (79-node)

0.10%

1.00%

10.00%

100.00%
1.5 2 3 4 5

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

SLSP2
SLSP3
SLSP4
SLSP5
Path-based

η

Blocking Prob. vs. Load (79-node)

0.10%

1.00%

10.00%

100.00%
1.5 2 3 4 5

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

SLSP2
SLSP3
SLSP4
SLSP5
Path-based

η

Blocking Prob. vs. Load (79-node)

0.10%

1.00%

10.00%

100.00%
1.5 2 3 4 5

Load (Erlang)

B
lo

ck
in

g
Pr

ob
.

CDR2
CDR3
CDR4
CDR5
Path-based

η

Blocking Prob. vs. Load (100-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
. SLSP2

SLSP4
SLSP5
SLSP6
SLSP8
Path-based

η

Blocking Prob. vs. Load (100-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
. CDR2

CDR4
CDR5
CDR6
CDR8
Path-based

η

Blocking Prob. vs. Load (100-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
. SLSP2

SLSP4
SLSP5
SLSP6
SLSP8
Path-based

η

Blocking Prob. vs. Load (100-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
. SLSP2

SLSP4
SLSP5
SLSP6
SLSP8
Path-based

η

Blocking Prob. vs. Load (100-node)

0.10%

1.00%

10.00%

100.00%
2 3 4 5 6

Load (Erlang)

B
lo

ck
in

g
Pr

ob
. CDR2

CDR4
CDR5
CDR6
CDR8
Path-based

η

(c) (d)

Fig. 10. Simulation for CDR with different traffic load and
diameters of protection domains.

B The Experiment for Comparison

In addition to the CDR algorithm with the best diameter in
each network topology (i.e., 2, 2, 3, and 4 hops for the network
N1, N2, N3 and N4, respectively), we also adopt the segment
shared protection algorithms in [6] and [7] for making a
comparison. Note that in this study we focus on capacity
efficiency of each algorithm, and will not pay attention to the
resultant restoration time.

The implementation of the other two schemes is briefly
described as follows. The first scheme taken for comparison in
this simulation is the dynamic-programming-based solution
provided in [7], which is denoted as PROMISE. With
PROMISE, a limited number of combinations of segmentation
are inspected along a single working path, which is derived in
advance by invoking Dijkstra’s shortest path first algorithm
with the cost function shown in Eq. (1) and Eq. (3). The second
algorithm is provided in [9] (denoted as OPDA), where the
length limitation for each candidate cycle is 10 hops. Since
OPDA is originally designed for optical networks with partial
wavelength conversion capability in each node, we simplify the
algorithm by taking the whole networks as having a single
wavelength plane.

Fig. 11 shows the simulation results of the comparison made
among the three cases under different network topologies and
traffic load. It is clear that CDR outperforms the other two
while OPDA is the worst. An observation is made upon CDR
and PROMISE described as follows. The two schemes place
the scarce computation resources on different searching
dimensions for allocating the protection domains. The CDR
algorithm pre-defines several sets of PSL-PML pairs with fixed
distance (back-tract of one hop is allowed) for each S-D pair,
and tries to find a better solution by manipulating the location
of working path segments. The PROMISE scheme, on the
other hand, tries to maximize the spare capacity resource
sharing by finding better locations of the switching and
merging node (i.e., PSL-PML pairs) for each protection domain
along a working path given in advance. With different
approximate terms, the two approaches yield different blocking
performance, optimality (see Table III), and computation time
(see Fig. 12), in which a compromise upon different design
dimensions is initiated in each scheme.

Comparison Among CDR, OPDA and
PROMISE (N1 with 22 nodes)

0.50%
2.50%
4.50%
6.50%
8.50%

10.50%
12.50%
14.50%

2 3 4 5 6
Traffic Load (Erlang)

B
lo

ck
in

g
Pr

ob
ab

ili
ty

CDR(2)
PROMISE
OPDA

η

Comparison Among CDR, OPDA and
PROMISE (N2 with 30 nodes)

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%

2 3 4 5 6
Traffic Load (Erlang)

B
lo

ck
in

g
P

ro
ba

bi
lit

y

CDR(2)
PROMISE
OPDA

η

 12

IEEE/ACM Transaction on Networking

(a) (b)
Comparison Among CDR, OPDA and

PROMISE (N3 with 79 nodes)

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%

1.3 2 3 4 5
Traffic Load (Erlang)

B
lo

ck
in

g
Pr

ob
ab

ili
ty

CDR(3)
PROMISE

OPDA

η

Comparison Among CDR, OPDA and
PROMISE (N4 with 100 nodes)

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%

2 3 4 5 6
Traffic Load (Erlang)

B
lo

ck
in

g
Pr

ob
ab

ili
ty

CDR(4)
PROMISE

OPDA

η
(c) (d)

Fig. 11. Comparison among the three schemes: CDR, OPDA
and PROMISE using the topologies N1, N2, N3, and N4.

As for OPDA, it is seen outperformed by both of the other
two schemes. Since OPDA is designed for WDM networks
with partial wavelength conversion capability in each node, the
migration of OPDA to this study may invalidate the merits of
the algorithm that are originally possessed. For example,
OPDA provides a strong functionality to deal with the
non-linearity inherent in the task of routing and wavelength
assignment for partial wavelength convertible optical networks,
which, however, is not appreciated in this case.

Fig. 12 shows the average computation time for allocating a
connection request in each case, which shows that the CDR
scheme takes a little bit more computation time than
PROMISE with the current experiment settings, while OPDA
yields the least average computation time in the simulation.
Note that this computation time is achieved in each case by
creating and maintaining a EE × matrix (called spare
provision matrix [15]) while the simulation is running, which
records the dependency between spare and working capacity
along each pair of links in the network.

We solve the ILP formulation in this paper using CPLEX 7.5
and a Sun Ultra 80 workstation. The average computation time
(including time taken by the pre-solver of CPLEX), memory
occupation, the number of rows, columns and the number of
non-zero elements of the constraint matrix (after the CPLEX
pre-solver reducing the size of the problem) are shown for both
cases in Table II.

Average Computation Time for Each Schemes

0

1

2

3

4

5

N1(22) N2(30) N3(79) N4(100)
Network Topologies

Ti
m

e
(in

 s
ec

on
d)

)

CDR
PROMISE
OPDA

Fig. 12. Comparison of average computation time for each case
in the network topologies N1, N2, N3, and N4.

It is clear that the complexity of solving the ILP grows very
fast as the network size increases, which leads to a fact that the
approach can hardly be applied for any on-line purpose.
Therefore, it is positioned as a benchmark to evaluate the

optimality achievable by the other heuristic counterparts. Table
III is a demonstration on the optimality achieved by each
scheme in the simulation. The offset from the optimality is
defined as Q = Ca/Copt – 1, where Ca is the total cost of the
working and protection segments for the connection request by
using a specific scheme, while Copt is the cost achieved by
solving the ILP formulation. The index Q is called Offset of
Optimality; in this particular case, Q is nothing but an
evaluation on the extent of resource sharing plus the extra (or
unnecessary) cost taken by the working path. The smaller the
value of Q is the better optimality has the heuristic algorithm
achieved. Due to the very lengthy computation process in the
79- and 100-node networks, we only conduct this experiment
in the 10-, 22- and 30-node networks, in which the ILP
formulation is solved for every one of 1000 connection
requests while the simulation is running in each case. Note that
since the optimality is focused in this experiment, we do not
consider any connection request that is blocked. Table III
shows the average Q value and the average cost taken by each
connection for in the experiment using N1 and N2.

Table II
The computation time and the amount of memory occupied for

CPLEX solving the ILP formulation.
 Time

(sec)
Memory

(MB) Row Columns Non-
zero

N0 (10) 5.6 5 1772 281 6012
N1 (22) 255 23 16996 993 53534
N2 (30) 1185 42 31840 1293 99012

Table III
Offset of optimality (Q value) and the average cost taken by

each connection request for all the schemes.
 CDR PROMISE OPDA ILP

9.3% 10.1% 13.8% 0% N1
(22-node) 2.210 2.226 2.301 2.022

12.1% 13.9% 16.4% 0% N2
(30-node) 2.439 2.478 2.533 2.176

V CONCLUSIONS
In this paper we have studied dynamic survivable routing for

a special type of protection, called segment shared protection,
in which a novel Integer Linear Programming (ILP)
formulation and a heuristic algorithm, called Cascaded Diverse
Routing (CDR), are proposed. This paper first defines segment
shared protection, and qualitatively demonstrates the
advantages in using segment shared protection, which includes
the facts that the restoration time can be shortened/guaranteed
and that a higher possibility of resource sharing can happen
between different protection segments. We also define the
spare link-state taking the SRLG constraint into consideration.
The ILP formulation is thus presented, where the
switching/merging nodes and the corresponding least-cost

 13

IEEE/ACM Transaction on Networking

working and protection segment pair for a connection request
are jointly determined in the programming process. A novel
approach of arc reversal along with a graph transformation
method is devised to keep the formulation linear and to deal
with the situation that the working segments of two
neighbouring protection domains may overlap with each other
by more than a single node. Due to the very high computation
complexity in solving the ILP, the heuristic algorithm, CDR, is
introduced. CDR is characterized by the fact that each working
and protection segment pair in a protection domain can be
solved independently from solving that of the other protection
domains for a connection request, which is designed to achieve
a better performance/computation-complexity gain. To verify
the proposed algorithms, a series of experiments/simulation are
conducted. By the simulation results, we first find that CDR
with a well designed diameter for each protection domain in a
specific network topology can yield the best performance. With
the best diameter in each network topology, CDR is compared
with two reported counterparts, namely PROMISE and OPDA.
The simulation results show that CDR can achieve the best
performance at the expense of longer computation time while
OPDA yields the worst. We also examine the optimality
achievable in each algorithm referring to the results of solving
the ILP formulation, and find that the better performance of
CDR is due to the smaller offset of optimality, which is in turn
caused by the flexibility of selecting a working segment in
each protection domain.

REFERENCES

[1] D. Zhou and S. Subramaniam, “Survivability in Optical
Networks”, IEEE Networks, November/December 2000, pp.
16-23.

[2] P. –H. Ho and H. T. Mouftah, “A Framework of Service
Guaranteed Shared Protection for Optical Networks, “IEEE
Communications Magazine, Feb. 2002, pp. 97-103.

[3] C. V. Saradhi and C. Siva Ram Murthy, “Dynamic
Establishment of Segmented Protection Paths in Single and
Multi-fiber WDM Mesh Networks”, Proceedings SPIE
OPTICOMM Aug. 2002, Boston, MA, pp. 211-222.

[4] M. Kodialam and T. V. Lakeshman, “Dynamic Routing of
Locally Restorable Bandwidth Guaranteed Tunnels Using
Aggregated Link Usage Information”, Proceedings IEEE
INFOCOM 2001, Anchorage, Alaska, pp. 376-385.

[5] C. –F. Su and X. Su, “An On-line Distributed Protection
Algorithm in WDM Networks”, in ICC 2001.

[6] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and A.
Srintson, “Algorithms for Computing QoS Paths with
Restoration”, IEEE INFOCOM, San Francisco, April 2003.

[7] D. Xu, Y. Xiong, and C. Qiao, “Protection with
Multi-Segments (PROMISE) in Networks with Shared Risk
Link Groups (SRLG)”, in the 40th Annual Allerton
Conference on Communication, Control, and Computing,
2002.

[8] L. Li, M. Buddhikot, C. Chekuri, and K. Guo, ”Routing
Bandwidth Guaranteed Paths with Local Restoration in
Label Switched Networks”, The 10th IEEE International
Conference on Network Protocols (ICNP), Nov. 2002, Paris,
France.

[9] P. -H. Ho and H. T. Mouftah, Spare Capacity Allocation for
WDM Mesh Networks with Partial Wavelength Conversion
Capacity", IEEE High Performance Switching and Routing,
HPSR 2003.

[10] D. Xu, C. Chunming, and Y. Xiong, “An Ultra-Fast
Shared Path Protection Scheme – Distributed Partial
Information Management, Part II”, The 10th IEEE
International Conference on Network Protocols (ICNP),
Nov. 2002, Paris, France.

[11] Y. Xiong, D. Xu and C. Qiao, “Achieving Fast and
Bandwidth Efficient Shared-path Protection”, IEEE Journal
of Lightwave Technology, Feb. 2003.

[12] P. –H. Ho and H. T. Mouftah, "On Optimal Diverse
Routing for Shared Protection in Mesh WDM Networks",
IEEE Transaction on Reliability. (to appear in March 2004)

[13] J. Tapolcai and T. Cinkler, “On-line Routing Algorithm
with Shared Protection in WDM Networks”, ONDM,
Budapest, Hungary, Feb. 2003.

[14] G. Li, D. Wang, C. Kalmanek, and R. Doverspike,
"Efficient Distributed Path Selection for Shared Restoration
Connections", IEEE INFOCOM 2002, NY, NY, June 2002.

[15] Y. Liu, D. Tipper, and P. Siripongwutikorn,
“Approximating Optimal Spare Capacity Allocation by
Successive Survivable Routing”, Proceedings IEEE
INFOCOM 2001, vol. 2, pp. 699-708, April 2001.

[16] R. Ramamurthy, S. Sengupta, S. Chaudhuri, "Comparison
of Centralized and Distributed Provisioning of Lightpaths in
Mesh Optical networks", OFC 2001, Anaheim, CA, March
2001.

[17] E. Bouillet, J. –F. Labourdette, G. Ellina, R. Ramamurthy,
and S. Chaudhuri, “Stochastic Approaches to Compute
Shared Mesh Restored Lightpaths in Optical Network
Architectures”, IEEE INFOCOM 2002, NY, NY, June 2002.

[18] C. Qiao and D. Xu, "Distributed Partial Information
Management (DPIM) Schemes for Survivable Networks -
Part I", IEEE INFOCOM 2002, NY, NY, June 2002.

[19] J. W. Surrballe and R. E. Tarjan, “A Quick Method for
Finding Shortest Pairs of Disjoint Paths,” Networks,
14(2):325-336, 1984.

[20] D. Papadimitriou, F. Poppe, S. Dharanikota, R. Hartani, R.
Jain, J. Jones, S. Venkatachalam, and Y. Xue, “Shared Risk
Link Groups Inference and Processing”, Internet Draft,
<draft-papadimitriou-ccamp-srlg-processing-02.txt>, work
in progress, June 2003.

[21] S. Yuan and J. P. Jue, “A Heuristic Routing Algorithm for
Shared Protection in Connection- Oriented Networks,”
Proceedings SPIE OPTCOMM 2001, Denver, CO, vol.
4599, pp. 142-152, August 2001.

 14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

