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Abstract –This paper proposes a suite of approaches to solving the survivable routing problem with 
shared protection. We first define in mathematics the maximum extent of resource sharing for a 
protection path given the corresponding working path according to the current network link-state. Then 
the problem of solving the least-cost working and protection path-pair (in terms of the sum of the cost) 
is formulated into an Integer Linear Programming process. Due to the dependency of the protection 
path on its working path, however, the formulation is nonetheless not scalable with the network size 
which takes an extra effort to solve. Therefore, two heuristic algorithms are introduced, called Iterative 
Two-Step-Approach (ITSA) and Maximum Likelihood Relaxation (MLR), which aim to explore the 
approximating optimal solutions with less computation time. We evaluate the performance of the 
proposed schemes and make a comparison with some reported counterparts. The simulation results 
show that the ITSA scheme with a properly defined tolerance to the optimality can achieve the best 
performance at the expense of taking longer computation time. On the other hand, MLR yield a faster 
path selection process, which initiates a compromise between computation efficiency and performance. 

Keywords: WDM, Diverse Routing, Shared Protection, Lightpath, Single failure scenario, Iterative 
Two-Step-Approach (ITSA), Integer Programming, Shared Risk Link Group (SRLG). 

 

I. INTRODUCTION 

Survivability has emerged as the most important issue in the design of the control and management 
plane for the next-generation networks. To deal with any unexpected interruption caused by accident 
events (such as rodent bite on communication fibers), pre-planning a protection path with sufficient 
bandwidth for each working path has been widely accepted as the most effective solution. The strategy 
is also known as survivable routing in the path selection stage. Innumerable research has been 
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conducted since mid 1990’s to equip the Internet and Metro-area networks with reliability and resilience 
to any unexpected interruption [1,2,4-15,17]. For the networks with connection requests arriving one 
after the other without any knowledge of future arrivals, it is important to develop a suite of 
interoperable strategies that can real-time solve for a link-disjoint working and protection path-pair 
upon the current link-state with high capacity-efficiency.  

With survivable routing, working and protection path-pairs are link- or node-disjoint, in which two 
types of protection are defined – dedicated and shared protection. The difference between the two lies in 
whether or not spare capacity resource sharing is allowed between different protection paths. In 
dedicated protection, each working and protection path-pair is pre-configured, and is launched with the 
same copy of data between a source-destination (S-D) pair at the same time during a normal operation. 
Although dedicated protection (e.g., 1+1) provides a very fast restoration service, the ratio of 
redundancy (i.e., the ratio of capacity taken by protection and working paths in the network) usually 
reaches 100%. On the other hand, in the shared protection only working paths are launched with data 
flows. The spare capacity reserved by protection paths is pre-planned without the necessity of being 
pre-configured, and may be shared with the other protection paths in the shared protection mode. It has 
been observed that the spare capacity resource sharing between different protection paths can 
substantially reduce the ratio of redundancy required to achieve 100% restorability at the expense of a 
little longer restoration time [7,8].  

For the survivable routing problem, Suurballe’s algorithm, reported in early 70’s, is famous for its 
polynomial computation complexity in solving optimal disjoint path-pairs in terms of the cost sum of 
the two paths on a directed graph [6,16]. It is notable that Suurballe’s algorithm uses the same suite of 
link-state to derive the two paths, and can only be useful with dedicated protection. For shared 
protection, the constraint of spare capacity sharing must be investigated upon each network link before 
the best protection path can be derived for a working path. Whether or not a link has sharable spare 
capacity for a protection path depends on the physical location of the corresponding working path. This 
is also known as the dependency of the protection path on its working path.  

The dependency has imposed different design criteria such that the existing linear formulations and 
most of the reported schemes cannot address the problem. In order to explore the dependency, the most 
straightforward way is to use Two-Step-Approach [6] to derive the link- or node-disjoint path-pairs 
[2,5,7,9,10,11,12,13,14,17]. However, the Two-Step-Approach is neither general to different network 
topologies nor systematic in deriving the best working and protection path-pairs upon the current 
link-state. In [5], a method is provided to find an optimal protection path given a working path for 
shared protection, called Pool-Reserved Backup Sharing. However, the study did touch the problem 
how to select the working paths. To address the allocation of working paths, the studies in [2,9,10,11] 
inspect k-shortest paths between each S-D pair one after the other until the least-cost working and 
shared protection path-pair is derived. In [2], a similar method to that of [5] is adopted along with the 
inspection of the k-shortest paths. The study in [9] creates special data structure to fast derive the 
k-shortest paths for solving the optimal diverse routing problem. However, it fails to specifically define 
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the sharing constraint to achieve 100% restorability. The study in [10] proposes an approach that further 
assigns cost to those links with sharable spare capacity, in which the probability for a link to be used by 
some other affected working paths due to failure is considered. However, this method does not 
guarantee the availability for the spare capacity along the derived protection paths at the occurrence of 
failure, and is not effective in some cases where the restorability of traffic flows is strictly required. In 
[11], a novel link cost metric for solving working paths is provided. The cost for the working path to 
take link j is determined by the maximum spare capacity among all the other links in the network which 
protects link j. The proposed link metric can encourage the working path to take links yielding smaller 
maximum non-sharable spare capacity along some other links for the protection path, and is reported to 
have a better performance behavior (in terms of blocking probability) than simply using hop count as 
the cost function. All the above schemes take the approach of enumerating the k-shortest paths n each 
S-D pair, which wears out the novelty and leaves a large space to improve.  

In addition to the end-to-end protection, the studies in [7,12,13,14,17] suggest to segment each 
working path and find a protection path segment for each working path segment. In [12], a heuristic 
algorithm is developed, which, however, did not consider the backup bandwidth sharing until the 
physical routes of the backup segments are defined. In [13] and [17], two related dynamic algorithms 
are proposed to switchover for each link from its immediate upstream node and merge back to the 
original path at the immediate downstream node and any of the downstream nodes, respectively. 
However, both of the studies do not impose any limitation on the length of the backup paths, and may 
impair the overall performance. It is notable that all the above schemes are Active-Path-First-based  
[11] (abbreviated as APF, which means that the working path is derived first), in which little attempt has 
been made to jointly solve the working and shared protection path-pair. In [7,14], a framework called 
Short Leap Shared Protection (SLSP) along with a dynamic algorithm called CDR (Cascaded Diverse 
Routing) is proposed to perform segmented shared protection, in which the enumeration of k-shortest 
paths in each segment of the working path is performed. The performance is reported to outperform its 
path-based and path-based shared protection counterparts while at the expense of much larger 
computation complexity. In addition, the link-based or segment-based shared protection takes extra 
signaling efforts and is imposed of high requirements on the hardware responsiveness.  

This paper turns back to the path shared protection aiming at achieving high computation efficiency 
without losing much performance. In this paper, we first define the optimality for a working and 
protection path-pair in shared protection. Then the optimal survivable routing problem is formulated 
into an Integer Linear Programming process, in which the optimal working and protection path-pair is 
jointly solved. To our best survey, this is the first study that formulates the optimal shared diverse 
routing problem into an Integer Linear Programming process. To avoid the high computation 
complexity caused by the NP-completeness in solving the ILP formulation, we develop two heuristic 
schemes to explore the best efficiency in solving the problem. The first is called Iterative 
Two-Step-Approach (ITSA), which enumerates and inspects k-shortest paths as the working path, and is 
also an extension of the schemes in [2], [9] and [10]. With ITSA, the computation complexity for 
on-line searching the k-shortest paths becomes a bottleneck for the overall performance. Therefore, the 
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second scheme, called Maximum Likelihood Relaxation (MLR), is a modified Dijkstra’s algorithm 
which yields polynomial time complexity. The MLR scheme considers the allocation of the protection 
path while the working path is being calculated, which aims to select a working path in such a way that 
the number of links containing enough sharable spare capacity weighted by the reciprocal of the link 
cost is maximized. We evaluate the performance of the proposed schemes by making a comparison with 
their counterparts using four network topologies with dynamically arrived connection requests. 

This paper is organized as follows. In Section II, a formal definition is given to the 
Two-Step-Approach for the shared protection purpose, including a short introduction to the sharing 
constraint unique to shared protection. In Section III, the optimal diverse routing problem is formulated 
into an Integer Linear Programming process followed by the introduction of the two heuristic 
approaches: ITSA and MLR. Section IV evaluates the performance of the proposed schemes and makes 
a comparison with some other reported schemes. Section V concludes. 

II. TWO-STEP-APPROACH IN SHARED PROTECTION 

In this section a specific cost function and dynamic link metric are defined to facilitate solving the 
best protection path for a given working path by using the Two-Step-Approach. The following tables 
show a list of notations and acronym in this study, respectively. 

Table I. List of symbols. 

cwj Cost of taking link j by working path W 
W
jcp  Spare link-state, or the cost of taking link j for spare capacity by 

the protection path of W 
LW The set of links taken by W 
WD A set of working paths taken by any working path other than W 

B(W) The bandwidth of W 
Vj The amount of spare capacity along link j 

W
jS  

The amount of non-sharable spare capacity in terms of the 
protection path of W 

W
jsh  The amount of sharable spare capacity in terms of the protection 

path of W; W
jj

W
j Vsh S−=  

j
lSB  The amount of non-sharable spare capacity on link j due to the 

working capacity on link l 

 

Table II. List of acronym. 

SRLG Shared Risk Link Group 

ITSA Iterative Two-Step-Approach 

MLR Maximum Likelihood Relaxation 

APF Active Path First 

CDR Cascaded Diverse Routing 

ILP Integer Linear Programming 

 

In shared protection, the feasibility of resource sharing between different protection paths is 
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determined by the relationship of their working paths. With the single failure scenario assumption in 
this study, we take working paths traversing through the same fiber conduit to be in a Shared Risk Link 
Group (SRLG) [7] subject to the same risk of single failure. All protection paths for the working paths 
in an SRLG are subject to a spare capacity resource sharing constraint, or called the SRLG constraint 
defined in [7]. With the SRLG constraint, protection paths cannot share spare capacity if their working 
paths are in an SRLG. As an example shown in Fig. 1, a working and protection path-pair W1-P1 
connects nodes S and D. If another working path W2 is allocated such that a common physical link (i.e., 
link A-B) with W1 is taken, we call that W1 and W2 are in an SRLG. The SRLG constraint stipulates 
that the protection path of W2 has to reserve extra spare capacity if it attempts to traverse any common 
link with P1. 

W2

A

P1

W1 B

W2W2

A

P1

W1 BA

P1

W1 BS D

W2

A

P1

W1 B

W2W2

A

P1

W1 BA

P1

W1 BS D

 

Fig. 1. An example showing the SRLG and the SRLG constraint. 

The dependency between the working and protection paths caused by the SRLG constraint is the 
reason why Suurballe’s algorithm cannot be applied in this case. Therefore, we can only use the 
Two-Step-Approach to solve the two paths one after the other, where the working path is solved first, 
followed by its protection path on the residual network topology with the links traversed by the working 
path excluded. This residual network topology along with the associated link-state is also called spare 
link-state, which is specific to the working path, and can only be derived by correlating all the other 
working paths on the same SRLG with the working path. 

The cost function and link-state metric for finding working path W are as follows: 



∞

=
                                 otherwise   

reservablenot  is  channel  theif   

j
j c

j
cw       (1) 

For the reservation of a protection path of W we need to define the corresponding spare link-state, 
which is: 





⋅
∞

=
jcr

j
cp

jj

W
j  along allowedpartly or  allowed is sharing resource if 

                                             reservablenot  is link  if    
      (2) 

where rj is a scaling parameter with a value between 0 and 1, and will be defined later in Eq. (3). It is 
notable that this study is different from most of the other studies in that the cost for a protection path to 
take sharable spare capacity along link j is proportional to the link cost for working paths instead of 
assigning zero or a very small value. The reason for doing so is as follows. Although a protection path 
traversing a link with sharable spare capacity will not consume any network resource along the link, the 
registration of the spare capacity may reduce the chance for the spare capacity to be taken by the other 
protection paths arriving in the future. The link cost cj is custom-designed, and can either be a constant 
(e.g., simply 1 for each hop), or can take dynamic network traffic into consideration (e.g., the maximum 
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reservable bandwidth along link j). The fact that a channel is not reservable by a working path can be 
because the link is too full of bandwidth to accommodate a single lightpath, or because the link is under 
some administrative constraints. However, for a protection path, a link cost can be zero because the link 
has sufficient sharable spare capacity; or infinity because it has insufficient free capacity or sharable 
spare capacity; or cj if the protection path has to reserve free capacity, which results in the same amount 
of resource consumption as the working path.  

To figure out the spare link-state W
jcp in Eq. (2), we first need to define sharable and non-sharable 

spare capacity along every network link. Fig. 2 illustrates the capacity distribution along link j. Note 
that due to the dependency between working and protection path-pairs, the amount of sharable spare 

capacity (i.e., W
jjV S− ), and non-sharable spare capacity (i.e., W

jS ), cannot be defined until the 

corresponding working path W is presented.  
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Fig. 2. An illustration of capacity distribution along link j. 

With the categorization of capacity along link j shown in Fig. 2, Eq. (2) can be generalized as: 









∈<+∞
>+⋅

≥+++−⋅
=

                                     or  , )( if      
                                  ,)(if    (W))/()(
)( if    )]/( )(/1[

LWjWBFsh
WB shBVWBc

WBFshshVshWBshc
cp

j
W
j

W
jjj

j
W
j

W
jj

W
j

W
jj

W
j       (3) 

for all Lj ∈ , where B(W) is the bandwidth of working path W, and LW is all the links traversed by W. 

Fig. 3 shows the four situations defined in Eq. (3). In Fig. 3(a) and Fig. 3(b), B(W) may take partly from 
the free-capacity region and the sharable spare capacity region; therefore, the link cost is 

)])/(2( )(/)(1[ W
jj

W
jj

W
jjj SV-SVWBSVc −⋅+−−⋅ , which is shown in the first condition in Eq. (3). 

The two terms ] )(/1[ WBshc W
jj −⋅  and )]/([ W

jj
W
jj shVshc +⋅  represent the cost for taking free 

and sharable spare capacity, respectively. In Fig. 3(c), all B(W) can take sharable spare capacity, 

therefore, the cost is ))(/()( WBVWBc jj +⋅ , as shown in the second condition in Eq. (3). In Fig. 3(d), 

the link cost is infinity because B(W) cannot be supported by the residual capacity of the link, as shown 
in the third condition in Eq. (3). Note that a protection path is assumed to take sharable spare capacity 
along a link whenever it is available. If there is not enough sharable spare capacity, the protection path 
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takes free capacity after considering all the sharable spare capacity. 
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Fig. 3. The four situations defined in Eq. (3). This figure is an extension of Fig. 2. 

The remaining problem is how to derive W
jS , which is a network-wide link-state specific to the 

presence of W. Let W traverse through a set of links, LW. Every link LWl ∈  is traversed by a set of 

working paths, W
lWD , before W is present. A simple illustration of the network apparatus is shown in 

Fig. 4. In this example, LW is a link set traversed by W, which are A-B, B-C and C-D. Our objective is 

to determine W
jcp – the link cost as the protection path of W attempts to reserve link j. To 

determine W
jcp  we must figure out the amount of spare capacity along link j subject to the SRLG 

constraint with the protection path of W. This amount of non-sharable spare capacity originates from the 
protection paths whose working paths are in the same SRLG with W. Therefore, the amount of 
non-sharable spare capacity along link j strongly depends on whether or not the working paths in LW 
have protection paths traversing through link j. 
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Link j
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A B

C D

]3[W
lWD
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lWD

]1[W
lWD

W

Link j

LW[l]

A B

C D
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]2[W
lWD

]1[W
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Fig. 4. An illustration of the network apparatus and symbols. 

Now we are interested in the spare capacity on link j demanded by the working paths along a 

link LWl ∈ , which is denoted as j
lSB . Note that the protection paths of the working paths in W

lWD , 

where LWl ∈ , can possibly yield non-sharable spare capacity along some links in the network. Thus, 

j
lSB can be expressed as: 
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 path  all and for   )( pLWlWBSB
p

l
p

j
p

j
l ∈⋅⋅= ∑ σδ       (4) 

where B(p) is the bandwidth of working path p, and j
pδ and j

pσ are two binary indicators defined as 

follows: 





=
                                            otherwise   0

link  traversepath protection its has  if   1  jpj
pδ  





=
   otherwise   0
 passes  if  1 lpl

pσ  

In other words, the demand for spare capacity upon link j from the working capacity along link l, which 
is subject to the SRLG constraint with the protection path of W, is the summation of all working 
bandwidth on link l that has the corresponding spare capacity along link j. We need to have summation 
of working capacity because the working paths traversing through link l are in the same SRLG, as a 
result, their protection paths cannot share any spare capacity along link j.  

Given a single failure scenario, only single link belonging to LW can possibly be subject to any 

interruption at a moment. Therefore, we can derive W
jS by finding the maximum demand of spare 

capacity along all the links }{ LWl ∈ , i.e., 

)(max j
lLWl

W
j SBS

∈
=       (5)  

With the knowledge of W
jS , we can determine the link-state W

jcp defined in Eq. (3) to solve the optimal 

protection path given the working path W.  

A pseudo code for deriving the spare link-state corresponding to W is as follows. A network is 

modeled as a graph topology G(N, E, WD), where N, E and WD are the set of nodes, directional links, 
and working paths existing in the network, respectively. Let the given working path, W, traverse link set 

LW, where ELW ⊂ . The amount of original spare capacity along each link is Vj where Ej ∈ . W
lWD  

is denoted as a set of working paths traversing through link LWl ∈ . The pseudo code first derive the 

non-sharable spare capacity W
jS , where Ej ∈ . Without loss of generality, every connection request is 

for a single lightpath with the same bandwidth, and therefore both W
jS and Vj are integer. It is clear that 

j
W
j VS ≥  , and the difference between W

jS and Vj is the sharable spare capacity along each link as 

shown in Fig. 2. 

Input: Network topology; original spare capacity Vj and the free capacity for each link jF for Ej ∈ ; 
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working path to be inspected, W. It is defined that the bandwidth of a path p is denoted as B(p). 

Output: Spare link-state, W
jLS for Ej ∈ . 

Initiate:  W
jS ← 0 and ∞←W

jcp  for Ej ∈ ;  
For ( Ej ∈∀ link  and  LWj ∉ )   Loop (1) 

For ( ←l 1 to LW )         Loop (2) 
←l

jSB 0;   
/* j

lSB is the amount of spare capacity on link j used to protect working capacity in W
lWD  */ 

←W
lWD all the working paths passing through LWl;  

/* i.e., all working paths sharing the same risk of a single failure passing through LWl */ 
For ( )link  passingpath  protection its and path   working jWDp W

l∈∀    Loop (3) 
)( pBSBSB l

j
l
j +← ;  

/* l
jSB  is the minimum spare capacity required along link j to protect the working 

capacity on link l where LWl ∈ , which is the bandwidth sum of all the working paths 
traversing through link l; we need to sum up because the working capacity are subject to 
the SRLG constraint, where no resource sharing between the protection paths of the 
working paths is possible; */ 

End For;              Loop (3) 
If ( W

j
l
j SSB > ) 

W
jS ← l

jSB ; 
End If 
/* with the single failure scenario, we need to find the maximum of l

jSB  for all LWl ∈ ; 
*/ 

End For            Loop (2) 
/* the non-sharable spare capacity W

jS caused by the SRLG constraint is determined; */ 
/* after the derivation of W

jS , the following pseudo code determines the spare link-state of link l, 
which is an implementation of Eq. (3); */ 
 
If ( )(WBFsh j

W
j ≥+ )  

/* enough capacity for the protection path exists on link j */ 
If ( )(WBshW

j ≤ ) then ])/( )(/1[ j
W
jj

W
jj

W
j VshVWBshccp ++−⋅← ; 

/* partly sharable and partly free capacity; the cost is determined by the percentage of free 
and sharable capacity; in case W

jjV S == , j
W
j ccp ←  */ 

If ( )(WBshW
j > ) then ))(/()( WBVWBccp jj

W
j +⋅← ; 

/* In the case that enough sharable spare capacity available the cost is determined by the 
ratio between the B(W) and Vj ; */ 
If ( W

jj SV == ) then j
W
j ccp ← ; 

Else ∞←W
jcp ;   

/* the jth link does not have enough capacity; */ 
End If 

End For; /* the cost for all link l is defined */   Loop (1) 
Return W

jcp  for Ej ∈ ; 

With the network topology cost by the spare link-state W
jcp for Ej ∈ , the best protection path for W can 

be solved by using Dijkstra’s shortest path first algorithm. The above pseudo-code and the definition of 
cost function can only work for the case with unity and discrete-bandwidth provisioning (e.g., lightpaths 
in the optical domain), but also the connections with continuous bandwidth. However, in the following 
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discussion, we will only focus on the former case where the setup of a working and protection 
lightpath-pair is requested. In this case, each connection request is for a single lightpath with uniform 
bandwidth. 

III FINDING OPTIMAL WORKING AND PROTECTION PATH-PAIR 

A Integer Linear Programming Formulation 

In this subsection, an Integer Linear Programming formulation is presented for solving the optimal 
diverse routing problem, where a commercially available ILP solver (i.e., CPLEX 7.5 in this case) is 
adopted to jointly determine the optimal link-disjoint working and protection path-pair upon a 
connection request according to the current link-state.  

The following symbols are adopted to develop the ILP formulation. Let the set of directional links 
and nodes in the network be denoted as E and N, respectively, the source and destination be denoted as s 
and d, and xa,b (or ya,b) be the binary variable which is 1 if the flow for the working (or protection) path 
passes the directional link (a,b). The symbol ca,b is the cost of taking a link for the working path. Note 
that ca,b is a parameter determined by the current link-state and network topology (and can be treated as 
a constant in the formulation), while za,b is the cost for the protection path to take link (a,b). Note that 
za,b is dependent on the location of working flows (i.e., xa,b). A small non-zero additional ε cost is 

imposed when the protection path consumes sharable spare capacity to minimize its length, which is 

defined in such a way that baEba
cE ,),(

min
∈

<⋅ε . In other words, ε  is a parameter only significant to the 

selection of protection paths. The symbol vu
bash ,
, for all edges  )( Ea,b ∈ and Eu,v ∈)( is a 

pre-calculated EE × array, which is the number of sharable wavelength channel along link (u,v) in 

case the corresponding working lightpath passes on link a to b . vu
bash ,
,  can be determined with the 

following formula: vu
baba

vu
ba SBVsh ,

,,
,
, −= , where vu

baSB ,
,  is defined in the previous section and is the 

number of spare channels at link u,v, which protect the working capacity on link a,b and Va,b is the spare 

capacity on link a,b. Note that the preparation of vu
bash ,
,  can be determined by the current link-state 

before the connection request arrives (or in the Inter-arrival planning [15]). 

The Integer programming formulation is as follows: 

Target function: minimize ba
Eba

bababa yzxc ,
),(

,,, )( ⋅++⋅∑
∈

ε ,        (6) 

which is subject to the following constraints 

1. The flow conservation constraint: 
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






∈==−

==
=− ∑∑

∈∈                      otherwise   0
 allfor          d  1
                           s  1

),.(. 
,

),.(. 
, Naa

a
xx

Eabtsa
ab

Ebatsb
ba         (7) 








∈==−

==
=− ∑∑

∈∈                       otherwise   0
 allfor           d    1
                          s    1

),.(. 
,

),.(. 
, N vv

v
yy

Euvtsv
uv

Evutsv
vu         (8) 

2. The constraint that working and protection paths should be link-disjoint: 

Ea,byx baba ∈∀≤+ )(for    1,,             (9) 

3. The constraint that both flows for working and protection paths should be integer (or the flow 
integrity constraint):  

{ } Ea,bzyx bababa ∈∀≥∈ )( for    0    ,1 ,0 , ,,,           (10) 

4. The SRLG constraint 9 

Eu,vEa,bshzyx vu
bavuvuba ∈∈+≤−+ )( and )( edges allfor   1 ,
,,,,       (11) 

In the above formulation, Eq. (7) and (8) are for the flow conservation constraint, which ensure the path 
requirement for both working and protection paths. Eq. (9) and (10) are to ensure the disjointness of the 
working and protection paths, and the integrity of the traffic flows, respectively. Eq. (11) states that the 

cost for the protection path taking link (u,v) has a lower bound of vu
bavuba shyx ,

,,, 1−−+  for all edges 

(a,b) and (u,v). 

Since the solving of the ILP formulation is time-consuming and can hardly be used as an on-line 
algorithm for large-sized networks (please see the discussions in Section IV), in the following sections 
we will provide two heuristic algorithms for this problem.   

B Iterative Two-Step-Approach (ITSA) 

We have defined the Two-Step-Approach for shared protection in Section II, where the spare 
link-state is determined for solving the best protection path with a given working path. However, the 
derived working and protection path-pair may be far from the optimal in this way. Even worse, in some 
cases the algorithm cannot find a disjoint path-pair even if one is available. The following figures show 
an example. In Fig. 5(a), the shortest path W1 between the source node A and the destination node B is 
found for the working path, which, however, isolates A and B. In this case, no disjointed path-pair can 
be found. Another example in Fig. 5(b) shows that the derived working-protection path-pair may be far 
from the optimal if there is an alternate path connecting node A and B. Both of the cases impair the 
overall performance. 
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Fig. 5. Examples to show the shortages of the Two-Step-Approach 

 

These shortages motivate us to enhance the conventional Two-Step-Approach. The algorithm, ITSA, 
can guarantee the derivation of the best working and protection path-pair under the current link-state by 
iteratively inspecting k-shortest paths as working paths in an ascending order of cost between the source 
and destination, where the Two-Step-Approach is invoked in every iteration. The iterative process does 
not end until certain pre-defined requirements are met, such as when the optimality of the derived 
path-pair has been achieved or a certain number of working paths have been inspected. A flowchart for 
the process of the ITSA algorithm is shown in Fig. 6. 
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Fig. 6. A flowchart of the Iterative Two-Step-Approach 

In the flowchart, the algorithm takes the shortest path as the working path corresponding to the 

connection request in the first iteration, which is denoted as W. The spare link-state W
jcp  for Ej ∈  is 

derived according to W (which is shown in the rectangle (1)). The rectangle (2) is to find the protection 
path using Dijkstra’s algorithm on the residual graph after excluding the physical edges taken by W and 
remarking each residual edge with the spare link-state. At this moment the working and protection 
path-pair has been derived for this iteration. The big rectangle (3) contains a series of functions to 
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perform the optimality check for the newly derived path-pair, compare the derived path-pair at this 
iteration with the stored one in terms of their cost (in the case of the first iteration, the cost of stored one 
is infinity), and replace the stored one with the newly derived path-pair if the newly derived path-pair 
has less cost. If the algorithm proceeds (i.e., the newly derived one is not the optimal), then the 
algorithm checks the pre-defined ending criterion to possibly terminate the iterative process in triangle 
(4). If not, the algorithm solves for the second shortest path denoted as W, and starts the next iteration.  

The functions of the optimality check and the ending criterion are presented. Without loss of 
generality, an example showing the approach of the optimality check is demonstrated in Fig. 7. Let the 
best solution recorded at that iteration be 5=+ recordedrecorded CPC , where Crecorded and CPrecorded are the 

cost for the recorded working and protection paths, respectively. In the event that the working path 
under inspection in the current iteration has a cost larger than or equal to 5, it is impossible to derive a 
better disjointed path-pair than the recorded one even if we can find a totally free protection path in the 
current or subsequent iterations. Therefore, the iterative process can stop since the optimal solution is 
the recorded one. Note that in order to guarantee the optimality for the derived path-pair, we may need 
to perform much more iterations to verify the optimality rather than for just deriving it. As shown in this 
example, the algorithm could have stopped and returned the derived solution when it finds CPrecorded and 
Crecorded (in which the cost for the working path is 3). However, to ensure the optimality, it cannot 
terminate the iterative process until the iteration yielding the working path with a cost 5 (i.c., Ccurrent). To 
improve this situation, the ending criterion is devised to tolerate the sub-optimality of the stored 
path-pair such that the number of unnecessary iterations can be reduced.  
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Fig. 7. An example of the optimality check in ITSA.  

In general, the computation complexity for deriving each k-shortest path is )log( 2 NNO ⋅  with 

Yen’s algorithm [16], where N is the number of nodes in the network. The total computation complexity 

is )log( 2 NNPO v ⋅⋅ , where Pv is the number of k-shortest paths inspected before the optimal 

solution is derived and verified. It is clear that Pv is strongly determined by the network topology, which 
yields an upper bound growing exponentially with the size of the network. We need an approach that 
can further reduce the total computation time. 

C Maximum Likelihood Relaxation (MLR) 
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This subsection introduces the MLR scheme, which is a modified Dijkstra’s algorithm 
carrying/handling some additional information during the Dijkstra’s relaxation process. The main idea 
for MLR is that the working path is selected such that the number of links without enough sharable 
spare capacity and working link cost are jointly considered. To be more concise, we called the links in 
the network with enough sharable spare capacity for the protection path of a working path segment, ws, 
as “Easy Links” of ws. During the Dijkstra’s relaxation process, when node n is given a temporary label 
through link (x,n),by node x, a new working path segment from the source node s to node n by way of 
node x (denoted as ),(),( nxxs ∪π ) is formed. We have the following relationship: 

),(),(),( xs
j

nxxs
j SS ππ ≥∪ for all link Ej ∈ and node n is not on the path segment ),( xsπ    (12) 

Please see Eq. (5) for the definition of ),(),( nxxs
jS ∪π  and ),( xs

jS π . Eq. (12) holds due to the reason that 

when node x gives a temporary label to node n and the resultant path segment ),(),( nxxs ∪π , the 

working paths passing through link (x,n) are newly included into the SRLG, which yields a fact that 
some sharable spare capacity in the network may become non-sharable along some Easy Links 
for ),( xsπ .  

 Based on the above discussion, it is clear that during the relaxation process, the amount of sharable 
spare capacity is getting less and the number of Easy Links is getting smaller. Therefore, one of the 
objectives in the proposed Dijkstra’s relaxation process is to find a working path such that the Easy 
Links can be as many as possible. In addition, we need to consider the cost of each link, ca,b , for 

Eba ∈),( , such that having a long working path is discouraged. In this study, the label (denoted as L[n] 

for node n) given by node x in the Dijkstra’s relaxation process is defined as the link cost cx,n divided by 
the log of the number of Easy Links for ),( nsπ . The label replacement at node n by node x will be 

conducted in such a way that L(n) is the minimal; i.e., 

)}1),(log(/][],[min{][ , ++= nxoffsetcxLnLnL nx ,         (13) 

where offset (x,n) is the reduction on the number of Easy Links for ),(),( nxxs ∪π . We have an 

expression for offset(x,n) as follows: 

})()(   where),(max  )sgn({

}),(  where),(max  )sgn({),(

x,ns,xπWLWBSBV

xsWLWBSBVnxoffset

j
lWLlj

WL
j

Ej
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j

j
lWLlj

WL
j

Ej

WL
j

∪=′−−←

−=′−−←=
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∈
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′

∈

′

∑

∑

ϕϕ

πϕϕ
   (14) 

where the function sgn(x) returns 1 if 0≥x , and 0 otherwise; Vj is the spare capacity along j and can 

be derived in the link-state database; j
lSB , as defined in Section II, is the number of spare channels at j 

which protect the working capacity along l before the arrival of the current connection request, and is 

supposed to be non-sharable if W traverses l. Both Vj and j
lSB can be derived off-line (i.e., before the 
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connection request is launched).   

The algorithm proceeds as follows: at the beginning, 0][ =nL for n = s and L[n] = ∞  otherwise. 

The extra information other than the ordinary Dijkstra’s relaxation process required to be recorded is an 

),( xsE π× array storing j
lSB , where ),( xsl π∈  and Ej ∈ . When the relaxation process attempts to 

replace the label of node n from node x, the “MAX” operation for the array storing j
lSB  will have to 

be performed for ),( xsl π∈  and ),(),( nxxsl ∪∈π so that Eq. (13) can function. In addition, when a 

node is relaxed, the array storing j
lSB  is also updated. After the derivation of the working path, the 

corresponding protection path can be derived by Two-Step-Approach defined in Section II.  

The computation complexity in implementing the MLR algorithm is )log( 2 NNEO ⋅⋅ . To see its 

detail, the complexity for performing the regular Dijkstra’s algorithm yields NN log⋅ . An extra 

computation effort to scan and update the array of j
lSB  is required each time when a temporary label 

is sent, which yields computation complexity )( NEO ⋅ . Therefore, the computation complexity for 

the MLR scheme is )log( 2 NNEO ⋅⋅  in the worst case. 

The MLR method cannot guarantee the derivation of the best working and shared protection path-pair. 
However, the computation efficiency can be tremendously improved compared with all the other two 
proposed schemes. We will verify the schemes with simulation in the subsequent section. 

IV. PERFORMANCE EVALUATION 

Experiments are conducted to verify the ILP formulation (denoted as ILP in the following context) and 
the ITSA and MLR algorithms on four networks with 22, 30, 79, and 100 nodes with Ultra-80 SUN 
workstations. The network topologies are shown in Fig. 8. Assume each directional link in the network 
supports 32 independent connections. We first examine the capacity efficiency in terms of blocking 
probability for the dynamically arrived connection requests following the Poisson model and a holding 
time with an exponential distribution function. Let node pair (i,j) be subject to traffic load 

)/( ,,, jijiji µληρ ⋅= , where jiji ,, , µλ are arrival and departure rate upon the node pair (i,j), respectively. 

ji ,µ is set to 1, while ji ,λ is a random number between 0.5~1.5, for all node (i,j). The scaling parameter 

η  represents the traffic load level of the network. Therefore, each node pair yields different bandwidth 

demand. Without losing of generality, every connection request is a single lightpath that occupies a 
wavelength channel as traversing through the corresponding link. For the ITSA scheme, in order to limit 
the computation time, the maximum number of allowable iterations for solving a connection request is 
50 for each case.  
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For a comparison purpose, we also implement the scheme provided in [11] (denoted as APF-PBC) 
and the scheme without any resource sharing (denoted as NS). With APF-PBC, the cost function for the 

working path is )
maxmax

max
1()( j

ljl

j
lj

ll S

S
FWL +⋅= , where Fl is the residual bandwidth of link l, j

lS is 

the total spare capacity required along link j to protect the working capacity along link l. With NS, the 
Suurballe’s algorithm [1] is adopted to find the least-cost working and protection path-pair in the 
network, where the resource sharing is not allowed. The link cost cj in Eq. (1) and (2) and ca,b in Eq. (5) 
and Eq. (13) is a random positive integer between 1 and 100 for all j and (a,b) when implementing NS, 
ITSA, MLR, and ILP.   
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Fig. 8(a)-(d). 22-node, 30-node, 79-node and 100-node network topologies. 

Fig. 9(a) ~ Fig. 9(d) show the simulation results for all the schemes in terms of blocking probability 
on the four network topologies. Since the solving of the ILP takes computation time much longer than 
are the cases of the other heuristics, we only verify ILP with the 22-node and 30-node networks as 
shown in Fig. 9(a) and (b). The computation time for solving the ILP formulation on the 22-node and 
the 30-node networks is around several seconds and 10~20 seconds by using CPLEX 7.5 on an Ultra 80 
SUN Workstation with 4 GB memory. However, it may take more than half an hour to allocate working 
and protection path-pair for a single connection request upon the 100-node network.  

It is clear from Fig. 9 that ITSA yields the best performance while NS yields the worst under the 
provisioned traffic load and the given network topologies. It is worth noting that although ILP can 
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provide the optimum allocation of working and shared protection paths for each connection request, the 
overall performance is outperformed by ITSA, MLR, and APF-PCB when the traffic load is high. We 
find out the reason for this unexpected and non-intuitive result as follows: The protection paths in ILP 
can be very long due to its non-adaptation of the sharable spare capacity with the cost of the working 
paths. It is extremely hard to find a suitable scale between the cost of working and protection paths. As 
mentioned earlier in the paper, a long protection path consuming a large amount of sharable spare 
capacity may increase the potential non-sharable spare capacity for the subsequent connection requests. 
As a result, the overall performance can be significantly impaired. This effect deteriorates the 
performance especially when the traffic load is high, in which the algorithm tries its best to find links 
with sufficient sharable spare capacity in the network to yield a very long protection path. However, if 
an attempt is made to impose an adaptive link cost on the protection path when it takes sharable spare 
capacity, the formulation becomes non-linear and can hardly be solved by any Linear Programming 
solver.  

From the experiment results the ITSA scheme can find a solution very close to the optimal one with 
50 iterations allowed before terminating the algorithm, which, however, differs from the ILP 
formulation in that it adopts the adaptive spare link-state (shown in Eq. (3)). As a result, a proper 
weighting on taking a spare link by a protection path is imposed, which yields the best performance 
among the five. It is observed from the experiment that the average length (in hops) of the path-pairs in 
the ITSA scheme is significantly less than is the case derived in the ILP formulation. 

It is also worth noting that MLR slightly outperforms APF-PBC because the former provides a 
specific path-based approach during the selection of a working path such that the corresponding 
protection path can find maximum number of links with enough sharable spare capacity in the network. 
The latter scheme, on the other hand, encourages the selection of the working path minimizing the sum 
of the maximum non-sharable spare capacity along each link, which is nonetheless not quite 
straightforward and may be far from being an effective approach to improve the resource sharing.  
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Fig. 9(a) ~ (d). Simulation results on the four network topologies with different traffic load. 

The average computation time spent for allocating each connection request on each of the 
experiments is shown in Fig. 10. We do not show the case of ILP because it yields too long a 
computation time to have any meaning by including it into the comparison. From the results, the NS 
consumes the least amount of time since no resource sharing needs to be investigated. Both MLR and 
APF-PBC only invoke Dijkstra’s algorithm twice, which are scalable to the network size. MLR needs 
an extra amount of time to inspect the number of Easy Links in the network during the Dijkstra’s 

relaxation process. The construction of spare link-state takes a worst-case complexity of )( NEO ⋅ , 

where the factor N comes from the length of the working path, while E  is the complexity taken to 
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mark each directional link in the network with non-sharable spare capacity for every link traversed by 
the working path. However, the practical implementation can be much faster, because neither a working 

path can be as long as N  hops, nor can the number of links that need to be re-marked with a new 

sharable spare capacity in each iteration of relaxation be as large as E . The NS case is even faster with 

a complexity )log( )/1( NEO NE+⋅  in implementing Suurballe’s algorithm [16]. The complexity in 

performing ITSA is much larger than the other heuristics due to its nature of iterative trial-and-error. 
The number of iterations required to find and verify the optimality in each case is strongly determined 
by the network size and the length of the working path. It is observed not practical to pursue the optimal 
solution in large-sized networks since the number of iterations required to verify the optimality can be 
more time-consuming than that an on-line algorithm should be afforded.  
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Fig. 10. Comparison of computation time between each case. 

IV. CONCLUSIONS 

In this paper we study the diverse routing problem for shared protection dealing with dynamic 
connection requests arriving at networks one after the other without any prior knowledge of future 
arrivals. A suite of algorithms are presented and verified with extensive simulation. We first define 
Two-Step-Approach in shared protection, which can explore the maximum extent of resource sharing 
for a protection path given the working path. To jointly consider the working and protection paths, we 
first formulate the diverse routing problem into an Integer Linear Programming (ILP) process, in which 
the working and shared protection paths corresponding to a connection request are solved in a single 
step. Due to its time-consuming solving process and bad scalability with the network size induced by 
the ILP formulation, we propose two heuristic algorithms, called Iterative Two-Step-Approach (ITSA) 
and Maximum Likelihood Relaxation (MLR), aiming at the improvement of the computation efficiency 
without losing much performance. The ITSA scheme iteratively takes k-shortest path for inspection, and 
can guarantee the derivation of the best solution. The MLR scheme, on the other hand, is a modification 
of the Dijkstra’s algorithm jointly taking the link cost and the number of links with sufficient sharable 
spare capacity into consideration. To verify the proposed approaches, simulation is connected on four 
networks launched with dynamic traffic following the Poisson traffic model. The simulation results 
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show that the ITSA scheme can achieve the best performance at the expense of much longer 
computation time. On the other hand, MLR can provide an ultra-fast path selection process, which 
behaves as a good tradeoff between computation efficiency and performance. It is worth noting that 
although the ILP formulation can achieve the greediest path selection process, the overall performance 
in terms of blocking probability is outperformed by the other heuristic counterparts due to the 
non-adaptation in the cost imposed on the sharable spare capacity.  

 

Acknowledge 

This work has been partly sponsored by National Science and Engineering Research Council (NSERC), 

Canada, grant No. 109968; and partly sponsored by OTKA 30122 of the Hungarian National 
Science and by High-Speed Networks Laboratory (HSNLab). 

 

REFERENCES 

[1] R. Bhandari, Survivable networks: algorithms for diverse routing, Kluwer Academic Publishers, 
Boston, 1999. 

[2] C. Xin, Y. Ye, S. Dixit, and C. Qiao, “A Joint Lightpath Routing Approach in Survivable Optical 
Networks,” Optical Network Magazines, May/June, 2002, pp. 23-32. 

[3] E. Q. V. Martins and M. M. B. Pascoal, “A new implementation of Yen's ranking loop-less paths 
algorithm”, Optimization 2001, Aveiro, July 2001 

[4] J. W. Surrballe and R. E. Tarjan, “A Quick Method for Finding Shortest Pairs of Disjoint Paths,” 
Networks, 14(2):325-336, 1984. 

[5] S. Datta, S. Sengupta, and S. Biswa¶, “Efficient Channel Reservation for Backup Paths in Optical 
Mesh Networks,” Proceedings IEEE Globecom’01, San Antonio, Texas, Nov. 2001, OPC01-7. 

[6] J. Tapolcai, P. Laborczi, P. -H. Ho, T. Cinkler, A. Recski, and H. T. Mouftah, “Algorithms for 
Asymmetrically Weighted Pair of Disjointed Paths in Survivable Networks”, Proceedings Third 
International Workshop on Design of Reliable Communication Networks (DRCN 2001), Budapest, 
Hungry, Oct. 2001, pp. 239-249. 

[7] P. –H. Ho and H. T. Mouftah, “A Framework of Service Guaranteed Shared Protection for Optical 
Networks, “IEEE Communications Magazine, Feb. 2002, pp. 97-103. 

[8] D. Zhou and S. Subramaniam, “Survivability in Optical Networks”, IEEE Networks, 
November/December 2000, pp. 16-23. 

[9] P. –H. Ho and H. T. Mouftah, “Issues on Diverse Routing for WDM Mesh Networks with 
Survivability”, Proceedings IEEE 2001 International Conference on Computer and Communication 
Networks (ICCCN’01), Scottsdale, AZ, Oct. 2001, pp. 60-65. 



 21 

[10] E. Bouillet, J. –F. Labourdette, G. Ellina, R. Ramamurthy, and S. Chaudhuri, “Stochastic 
Approaches to Compute Shared Mesh Restored Lightpaths in Optical Network Architectures”, 
Proceedings IEEE Infocom 2002. 

[11] D. Xu, C. Qiao, and Y Xiong, “An Ultra-fast Shared Path Protection Scheme -- Distributed Partial 
Information Management, Part II”, Proceedings IEEE International Conference on Network 
Protocols (ICNP 2002), Paris, France, Nov. 2002. 

[12] C. V. Saradhi and C. Siva Ram Murthy, “Dynamic Establishment of Segmented Protection Paths in 
Single and Multi-fiber WDM Mesh Networks”, Proceedings SPIE OPTICOMM Aug. 2002, Boston, 
MA, pp. 211-222. 

[13] M. Kodialam and T. V. Lakeshman, “Dynamic Routing of Locally Restorable Bandwidth 
Guaranteed Tunnels Using Aggregated Link Usage Information”, Proceedings IEEE INFOCOM 
2001, Anchorage, Alaska, pp. 376-385. 

[14] P. –H. Ho and H. T. Mouftah, “Allocation of Protection Domains in Dynamic WDM Mesh 
Networks”, ICC 2003 (accepted). 

[15] P. –H. Ho and H. T. Mouftah, “A Framework of Scalable Optical Metropolitan Networks for 
Improving Survivability and Class of Service”, IEEE Network, Special issue on Scalability in 
Communication Networks, July/Aug. 2002, pp. 29-35. 

[16] J. Y. Yen, “Finding the k shortest loopless paths in a network”, Management Science, vol. 17, pp. 
712-716, 1971. 

[17] C. –F. Su and X. Su, “An On-line Distributed Protection Algorithm in WDM Networks”, in ICC 
2001. 


