
A Heuristic Algorithm for Network-Wide Local
Unambiguous Node Failure Localization

László Gyimóthi, János Tapolcai
MTA-BME Future Internet Research Group, Dept. of Telecommunications and Media Informatics,

Budapest University of Technology and Economics, {tapolcai, gyimothi}@tmit.bme.hu

Abstract—This paper deals with fast node failure localization
in optical networks with monitoring trails (m-trails). It is based
on Network-wide local unambiguous failure localization, which
enables every node to autonomously localize any single node
failure in the network in a distributed and all-optical manner
by inspecting the m-trails traversing through the node. A new
and innovative heuristic algorithm is presented which is based
on recursion and constrained matching algorithms in general
graphs. Extensive simulation is conducted to examine the pro-
posed heuristic in terms of the required cover length to achieve
NL-UFL. In our experiments the new heuristic can reduce the
computation time by 1000-10000 times compared to prior art.

I. INTRODUCTION

The problem investigated in this paper is related to optical
layer restoration, which allows full reconfiguration of the
optical network to survive failures. Although restoration can
achieve the theoretically minimal protection capacity, imple-
menting restoration requires an intensive synchronization in
the restoration process within 50 msec after the failure, which
leads to long recovery time, and makes the mechanism not
popular in practice. For example implementing stub release1

in real time requires an exact knowledge of the failed elements
(links and nodes) in the network for each node. To fill this gap,
in the paper we focus on fast failure localization techniques
for single node failures.

The traditional approaches use control plane packets to
exchange the status information of the links and nodes after
failures. When multiple failures are considered the general
approach in network planning is defining the set of failure
states the network can survive, called shared risk link groups
(SRLG)2. This eventually results that after failure the ID
of the failed SRLG should be disseminated. An alternative
idea was to follow the compressed sensing approach, where
a set of supervisory lightpaths are allocated in the network.
Each supervisory lightpath, a.k.a. monitoring-trails (m-trails),
intrinsically carries one bit of information about the failure.
The idea is, that a network failure interrupts every supervisory
lightpaths traversed by. This is immediately seen at every
downstream node to the failure along the interrupted super-
visory lightpaths with optical channel tap monitors. A node is
called local unambiguous failure localization (L-UFL) capable

Research partially supported by the Hungarian Scientific Research Fund
(grant No. OTKA 108947).

1releasing the bandwidth of all the connections interrupted by the failure
2The rest of failure events are unlikely and thus ignored at the planning

stage.

if this information is sufficient to identify the failed SRLG. The
m-trail approach is expected to serve as a complement to the
existing electronic signaling approaches and enables an ultra-
fast and deterministic fault management process [1]–[8]. A
detailed overview of fast failure localization with the m-trails
can be found in the book [2].

L-UFL was first investigated in [7] where the goal was to
determine one (or more) monitoring locations (MLs), that are
nodes in the network where the m-trails can terminate, in order
to collaboratively identify the failed SRLGs according to the
alarms collected by the MLs. These MLs can reconfigure the
network after the failure in a centralized manner. To reduce
the recovery time [1] extended this model by exploring the
scenario where not only the terminating node but also an
intermediate node of an m-trail can obtain its on-off status via
optical signal tapping. It requires every node to be L-UFL,
called Network-wide L-UFL (NL-UFL), which allows a sig-
nificantly shorter recovery time as the network reconfiguration
after the failure is carried out without any control packet, just
using the local failure information available at each node. The
study [1] focused on the problem of allocating m-trails capable
for NL-UFL for any single link failure. Link failures are more
common than node failures, however the failure of a node
has a larger influence on the network configuration, because
all the connections terminating in the failed node can be
released. Therefore localizing node failures is also important
for optical layer restoration. However, for link failures the
efficient heuristics allocate only m-trails that traverse every
node in the network, which is not capable of localizing node
failures, as a failure of the node would interrupt each m-trail
in the network. Localizing node failures in NL-UFL is a rather
challenging problem and the only paper reported was [8]. It
presents a heuristic algorithm that generates a random initial
solution that is possibly invalid. Next through a series of minor
modifications it is changed to valid solutions. To verify the
validity of the solution, the L-UFL capability of each node is
checked, which is a slow process3. This function is launched
hundreds of times, which end ups a rather time consuming
job.

In this paper we follow the NL-UFL model of [8] and the
goal is to localize single node failures only. Note that the m-
trails can localize a single failure, thus to be able to identify
a next failure after the first failure the m-trails should be

3at least |SRLG| · |V | steps

reconfigured. Therefore the computation time of the NL-UFL
design algorithm is an important factor in the applicability of
the approach. The main contribution of the paper is to present
a new heuristic algorithm for the problem which is four order
faster then the prior art. We take a novel approach which
ensures the validity of the solution by limiting the problem
space to specific m-trail constructions.

The paper is organized as follows. Section II defines the
m-trail problem. Section III introduces the proposed heuristic
algorithm on general graphs and Section IV shows simulation
results which verify the proposed heuristic algorithm. Sec-
tion V concludes the paper.

II. PROBLEM DEFINITION

The problem input is an undirected graph G = (V,E) with
node set V and link set E, where the number of nodes is
denoted by n = |V |. The NL-UFL m-trail allocation problem
for single-node failure is to establish a set of m-trails, denoted
by T = {T1, . . . , Tb} where b = |T | is the number of m-trails,
and each node vj ∈ V can achieve L-UFL according to the
on-off status of m-trails in T j = ∀Ti|vj ∈ Ti - the subset
of T containing the m-trails passing through vj . In this paper
we focus on single node failures only, and assume the links
are perfect. Thus, compared to the prior art, the m-trails are
defined as a set of nodes, instead of a set of links. After the m-
trails are computed links are selected to form a closed trail in
the network through the nodes. Therefore, we need to ensure
each m-trail Ti ⊆ V is composed of a set of nodes defining
a connected component of G. Let bj = |T j | the number of
m-trails seen at node vj . Let Aj denote the alarm code table
seen at node vj , which is an |V |× bj matrix with aji,[k] = 1 if
the k-th m-trail seen at vj traverse node vi and 0 otherwise.
We say the failure of node vi can be localized at node vj if
the i-th row of Aj is unique.

The set of m-trails T j for vj must satisfy the following two
requirements:

(R1): The failure of every node vj ∈ V results a unique
alarm code at every node vk ∈ V . Formally,
∀vj , vk, vl ∈ V there is an m-trail Ti ∈ T such that
vl ∈ Ti, and either vj ∈ Ti and vk /∈ Ti, or vj /∈ Ti
and vk ∈ Ti.

(R2): m-trail Ti ∈ T is a set of nodes forming a connected
subgraph of G, for i = 1, . . . , b.

The objective is to have minimal average number of m-trails
seen at each node, i.e.

||T ||V =
∑
vj∈V

bj
n

=

b∑
i=1

|Ti|
n
, (1)

where the equality holds because the total sum of the m-trails’
lengths equals to the sum of the number of m-trails seen at
all the vertices.

The simplest way to implement NL-UNFL in a 2-connected
network with n nodes is to define n monitoring trails where the
i-th trail contains all the nodes except for the i-th one, see also
Fig. 1 as an example. Thus, when a single failure occurs in the

Notation Description
G = (V,E) undirected graph representation of the topology
n = |V | the number of nodes in G

b the number of m-trails
T = {T1, . . . , Tb} a solution with b m-trails

T j the m-trails seen at node vj
Ti the ith m-trail, which is a set of nodes in G

|Ti| number of nodes the ith m-trail traverses
bj number of m-trails traversing node vj
Aj the alarm code table seen at node vj ∈ V
||T ||V normalized cover length, see (1)

network, it affects all the trails except for the one that bypasses
the faulty element, so that every node can unambiguously
identify the location of the failure. This approach provides
a fast and clear way to reach the desired operation, however,
as the number of required m-trails is a linear function of the
size of the graph, and the normalized cover length is n−1, this
configuration does not satisfy our requirements and constraints
on the bandwidth occupancy. Instead of linear results, we seek
after solutions with logarithmic nature, as only dlog2 ne bits
are needed to distinguish n elements.

11111110 11111101

11111011

11110111

1110111111011111

10111111

01111111

v8 v7

v6

v5

v4v3

v2

v1

Fig. 1. Implementing NL-UNFL in a simple way on a 2-connected graph
with 8 nodes

III. RECURSIVE MATCHING-CONTRACTION ALGORITHM
(RMCA)

Inspired by the m-trail construction for star graphs given
in [1] we define a general construction for NL-UNFL. We
assign unique binary codes with a length of k bits to the nodes
in such a way, that at every bit position both the subgraphs
composed by the 1s and the 0s are connected. See also Fig.
2 as an example. In this case NL-UNFL is achievable with
2k + 1 m-trails. It is because the first k bits have to be the
unique binary codes of the nodes, and then the complements
of these binary codes have to be appended to them, which
means 2k bits altogether. This procedure guarantees, that each
node is traversed by exactly k trails, and can distinguish all
the possible single node failures. However, as we might have
pairs of codes that are exactly the complements of each other,
an additional trail has to be defined, which traverses all these
complement pairs in the network. It guarantees unambiguous
node failure localization at every node.

Assigning unique binary codes in a way mentioned above
is not trivial because we need to ensure that at every bit
position, both the subgraphs composed by the 1s and the 0s are
connected and also to keep the value of k as low as possible.
A possible solution could be the following:

F

J

G

C

A

P

M

H

I

D

E
B

N

O

L

K

F

G

C

AE

P

JM

HI

D

B

N

LO

K

G

CJM

AEF

P HILO

D

B

N

K

GP

CJM

ABEF

DHILO N

K
CGJMP

ABDE
FHILO KN

ABCD
EFGHI
JLMOP

KN

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

(a) The graph and the maximal matching with bold edges and the two connected color class after merging in each step. The bold edges at every step
are the ones that will be contracted for the next iteration, so that their two vertices’ labels can be merged together, indicating, that they will be on the
same m-trails further on. Thus, on the initial graph the edges connecting J−M , A−E, H− I and L−O can be contracted. Consequently, in the next
iteration we are looking for a matching with connected color classes in a smaller, 12-node graph. The color classes and the obtained matchings are the
result of the previously proposed graph coloring, and augmenting methods. The same matching-contraction steps can be executed in the next iterations,
and each step defines two new m-trails.

(b) The corresponding two m-trails for the two colors classes are represented with a solid and a dashed line (for white and grey classes respectively) for
each step, resulting in 12 trails altogether. As mentioned before, an additional trail should be added to the solution when we have nodes that are assigned
complement binary codes, as they cannot take notice of each other’s failure. On our example K-G, and N -J are complement pairs (meaning they are on
different trails for all the 6 pairs), so that the last m-trail has to include them along with vertices H, I and P to make the trail connected. This last trail
will increase ||T ||V by 7

16
, as it traverses 7 vertices in the 16-node network.

Fig. 2. An illustrative example of the algorithm on 16-node European reference network. Fig. (a) shows the sequence of merging steps, where each merging
step defines two new m-trails representing the two disjoint color classes, colored with white and grey. The importance of the connectivity of both color classes
is shown by Fig. (b).

• Divide the vertices of the input graph G = (V,E) into
two disjoint color classes in such a way, that both classes
compose a connected subgraph of G. Find a maximum
matching M among them. Vertices in the same classes
are assigned the same binary value at the current bit
position. In other words two m-trails are defined, each
containing the nodes of a color class.

• Contract ∀e ∈M resulting a new graph G′ = (V ′, E′).
• Save the two new m-trails and continue iterating these

two steps on the new graphs, until only one vertex
remains.

As for ∀e = (i, j) ∈ M the two vertices i and j are in
different color classes (meaning they have different binary
values in the given position), they can be distinguished further
on from each other. Thus, their contraction will not affect the
uniqueness of the bit sequences, but it reduces the size of the
graph, so that the algorithm has to work on a smaller graph
at every iteration. It can be easily shown, that at the end of
the algorithm, all the vertices are assigned a unique binary

code. Moreover, the subgraphs of both the 1s and the 0s are
connected at each bit position.

Obviously, the hardest part of the algorithm described above
is finding two disjoint connected subgraphs with maximum
matching among the nodes of the two subgraphs. Edmonds’
algorithm, described in [9], finds a maximum matching in
a general graph in polynomial time, however, it does not
take into account the connectivity constraint of the nodes
in each color classes, therefore it cannot be used as is for
our case. In the next section we propose a heuristic inspired
by Edmonds’ algorithm. The theoretical lower bound on the
cover length for NL-UNFL is dlog2 ne as every node need
to distinguish n− 1 different node’s failure, and the faultless
state. The proposed recursive matching-contraction algorithm
(RMCA) can reach a ||T ||V value of dlog2 ne + κ, where
κ = 2·(n−2dlog2 ne−1)

n , 0 < κ ≤ 1. In order to achieve
this minimum value, the number of merging iteration steps
should be dlog2 ne, meaning, that after the dlog2 ne-th step
the contracted graph is composed of a single vertex. If we

encode n nodes in dlog2 ne bits, then a minimum number of
n−2dlog2 ne−1 complement codes will be obtained, as there are
2dlog2 ne−1 codes in the set of binary sequences with length of
dlog2 ne that are pairwisely not complement of each other. Let
δk denote the needed matching cardinality, and nk the number
of nodes in the k-th iteration. If we would like to encode n
nodes in dlog2 ne bits, then δk ≥ nk − 2dlog2 ne−1 should be
satisfied for every k.

A. Heuristic to Find Maximum Matching with Nodes in Each
Color Class Being Connected

The solution given by Edmonds’ algorithm contains the
maximal matching in the graph obtaining two color classes.
We call the edges with the same color and both ends as
intra-class edges, otherwise it is an inter-class edge. In the
subproblem we are facing we also need to ensure that the
nodes in each color class can be connected with a trail on
intra-class edges. A promising idea to use a local search
heuristic, that adapts the augmenting paths technique of the
matching algorithms, but ensures the connectivity of the color
classes at the same time. In other words it tries to maximize
the cardinality of an initial matching by means of certain
augmenting paths. In case of bipartite graphs the concept of
an augmenting path is well defined: it is an alternating path
from u to v, where u and v are in different color classes,
and neither of them are included in the current matching. An
alternating path is a sequence of edges where every second
edge is included in the current matching set M. Obviously,
this definition of augmenting path can be used for general
graphs as well; if we define the two color classes, augmenting
paths can be found regardless the edges that connect vertices
in the same color class. Hence, the concept of augmenting
path is implemented in the heuristic.

First of all, the two color classes should be defined; this is
achieved by random walks initiated from two nodes r0 and b0.
If the graph is connected (as we always assume), the walks
will eventually cover all the nodes in the network classifying
them into R and B classes. Then, a maximal matchingM0 is
found in a greedy way, where an independent set of inter-
class edges is chosen. Handling G as a bipartite graph, a
maximum matching M can be obtained from M0 by means
of augmenting paths. However, the aforementioned intra-class
edges (which do not exist in bipartite graphs) could be utilized
as well, in order to define new types of augmenting paths,
hereafter let us refer to them as mixed augmenting paths
(MAP).

1) MAP type 1: A very simple way to increase the cardinal-
ity ofM is the following; supposing that there is an unpaired
vertex r1 ∈ R, that is connected to an unpaired vertex r2 ∈ R
and another vertex b1 ∈ B, r1 can be transposed to the color
class B, and the edge e = (r1, r2) can be added toM. In order
to keep the color classes connectivity, another very important
constraint has to be satisfied: r1 must not be an articulation
point (cut vertex) of its original color class R; meaning, that
its removal must not cease the connectivity of R. Note, that
not all the edges are included on Fig. 3, only the ones that are

b1

r1 r2

b1 r1

r2

b1

r1

b2

r2

b1

r1 b2

r2

r2

b1

r1

r2

b1 r1

Fig. 3. An example of the 3 different MAPs

directly utilized during the augmenting method and the ones
included in M (bold edges).

2) MAP type 2: Another possible matching-increasing
method is very similar to the augmenting path for bipartite
graph matchings. Provided that there is an alternating path
from a pair vertex r1 ∈ R to b1 ∈ B, and both r1 and b1 are
connected to an unpaired vertex in their own color class, then
an augmenting path is found (see Fig. 3). Note, however, that
neither r1 nor b1 can be cut vertices in their class, since the
class-connectivity constraints have to be satisfied.

3) MAP type 3 + Spreading: It might happen that after
the initialization, one color class is significantly larger, than
the other one. In that case, the augmenting process gets stuck
after a few steps, and the resulting matching will probably
have a suboptimal cardinality. A possible way to overcome
this issue is to somehow force the smaller class spread into
the larger one. Fig. 3 shows one step of spreading. If the
larger color class contains a paired vertex r1 that is not a cut
vertex, and is connected to a not paired vertex within its class,
then it can be moved to the smaller class. Spreading does not
increase the cardinality of M, it only balances the number of
the vertices in the two color classess. However, if the pair of
r1, b1 is connected to an unpaired vertex r2 ∈ R, then that
edge e1 = (b1, r2) can be added toM. Thus, spreading might
increase the cardinality ofM. This method can be the 3rd type
of augmenting paths.

Note, that it is possible to define further MAPs, that might
increase the cardinality, but for the sake of simplicity and
quickness we have used only the ones introduced above.

B. Articulation Point Removal

The proposed RMCA performs very well on graphs with
large average nodal degree, nevertheless, it has some limita-
tions on real network topologies with lower nodal degrees. The
main reason for this behaviour is the emergence of cut vertices
during edge contractions. Once the algorithm reaches a point,
where an articulation point appears, the convergence becomes
slower, much lower number of edges can be contracted at
each step. The underlying reason for this deceleration is
the following: a cut vertex v seperates the graph into two
components A and B, thus when the color classes are being
constructed, vertices in one of the components have to be in
the same color class as v is. Consequently, no edges in either
A or B can be included in the matching.

The removal of the cut vertex, and connecting its neighbour
vertices with each other would solve this issue. In order to jus-
tify this step, four additional monitoring trails have to be added
to our set: two for the two components containing the cut
vertex, and two more monitoring trails for the two components
without the cut vertex. The unambiguous localization of the cut
vertex in the whole network is ensured this way. The drawback
for the newly added edges after the vertex removal is twofold.
First, and most importantly it will increase the normalized
cover length value by two, as every node is crossed by two out
of the abovementioned four additional trails. Secondly, as the
removed cut vertex contained several nodes from the original
graph (because of the contractions of the previous steps), its
removal means that these vertices might be included in both
color classes during the forthcoming iterations, which will also
slightly increase the cover length.

Leaf vertices (nodes with degree one) are managed in a
different way. Instead of removing their neighbour cut vertex
and adding four more m-trails as it was described above, we
can simply contract them to their neighbour, by defining 2
new m-trails for every leaf node v: one containing only v, and
another one containing the rest of the graph: G \ {v}.

C. Unnecessary M-Trail Removal

Following the previously described steps clearly guarantees
NL-UNFL, however, it might happen that a few m-trails
become superfluous, meaning they can be removed from our
set T without violating the unambiguousity of the localization.
Thus, a decrease in terms of ||T ||V can be achieved. Superflu-
ous trails are particularly likely to appear during articulation
point removals, where four trails are added to T for each
vertex removal, as seen in III-B. Nevertheless, while adding
four trails ensures further localization unambiguousity for all
possible scenarios, most of the times two trails are sufficient
in practice. Therefore, as a final step, RMCA eliminates all
the unnecessary monitoring trails from T .

IV. SIMULATION RESULTS

The proposed algorithm was tested on a large number of
different input topologies including graphs representing real
optical networks. As a comparison we used the Greedy Link
Swapping heuristic for node failures GLSnode in [8]. The
objective in the GLSnode heuristic is to minimize the total
number of m-trails, while in this scenario the objective is to
minimize the average number of m-trails seen at each node of
the network. Note that the RMCA algorithm finds solutions
with smaller m-trails than GLSnode, which results smaller
average number of m-trails traversing the nodes even if the
total number of m-trails might be larger.

First, we generated a large number of planar graphs with
large diameter. We used the a random graph generator for
creating optical network-like topologies [2].We have increased
the average nodal degree of a 50-node graph by 0.08 steps
from 2.0 to 10.0, at every step 5 different graphs were
generated, resulting in a total number of 500 graphs. The
algorithm was executed on each graph for 5 times. The

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10

C
ov

er
le

ng
ht

Average nodal degree

Augmented
Minimum augmented
Without augmenting

Theoretical minimum

Fig. 4. Results of 500 randomly generated planar graphs with 50 nodes.

mean ||T ||V value and standard deviation for a given nodal
degree were calculated from the corresponding 25 results.
The algorithm was executed both with and without the usage
of the augmenting paths discussed in III-A. In the former
case all the previously mentioned augmenting paths, and cut
vertex removals were included. In the latter one, however, none
of these methods were utilized for increasing the matching
cardinality, the matching achieved after the initial coloring
was used for all the cases. The results are shown on Fig. 4
where the 95% confidence intervals are drawn with error bars,
and also the minimum possible ||T ||V value, provided by the
heuristic algorithm. As the input graph contains 50 nodes, the
minimum attainable value of ||T ||V is dlog2 ne+κ = 6.72 (see
III), indicated with a dash-dot line on Fig. 4 as the theoretical
minimum. Note, that RMCA with augmenting paths not only
approaches the optimum much quicker, but it also provides
significantly smaller variance. The main importance of this
figure, however, is that RMCA performs well on graphs with
rather low average nodal degree. As mentioned before, we
are mainly interested in backbone optical networks, with an
average nodal degree value of 3-4.

The proposed algorithm has also been tested on 10 well-
known optical networks, taken from [11]. The algorithm was
executed on each topology 100 times on a commodity laptop
with 1.8 GHz core i5 CPU and 4 GB RAM. The results are
summarized in Table I along with the running time for a
single execution, the corresponding results of GLSnode, and
the theoretical lower bound of ||T ||V , dlog2 ne. Note, that
in most of the cases not only the minimum, but also the
mean values of ||T ||V provided by RMCA are significantly
better than the results of GLSnode algorithm. Furthermore,
the running time of a single execution of RMCA is most
of the times almost an order of magnitude smaller then the
GLSnode method’s, while the best ||T ||V reached by RMCA
is on average 23% better than the values obtained by GLSnode.

To compare the running time of the two approaches we
launched both algorithms 100 times for the networks of Table
I. Fig. 5 shows the best solution found versus the running time
for 4 selected networks. In these networks RMCA turned out
to find solution with the same quality 1000-10000 times faster
than GLSnode. For example for the North American network
GLSnode found a solution with ||T ||V = 12.44 after running
1009 seconds, while RMCA for the first run found a better

TABLE I
RESULTS ON SOME WELL-KNOWN OPTICAL NETWORKS

Graph Results of GLSnode Results of RMCA
Network n Nodal degree dlog2 ne Best ||T ||V Runtime[s] Mean ||T ||V Best ||T ||V Runtime[s] Improvement [%]

Pan-European 16 2.75 4 8.31 0.38 6.853 6.187 0.13 25.6
German 17 3.06 5 8.71 0.9 8.304 6.647 0.15 23.7
ARPA 21 2.38 5 10.33 0.83 8.623 7.571 0.19 26.7

European 22 4.09 5 10.5 2.24 7.779 6.364 0.24 39.4
USA 26 3.23 5 11.38 3.31 10.77 9.115 0.34 19.9

Nobel EU 28 2.93 5 12.42 3.04 10.675 8.643 0.38 30.4
Italian 33 3.4 6 14.09 10.52 12.375 10.606 0.66 24.7

Cost 266 37 3.08 6 11.75 7.56 11.308 9.081 0.82 22.7
North American 39 3.13 6 12.43 10.09 12.812 10.333 1.18 16.9

NFSNET 79 2.73 7 17.68 68.7 20.868 17.379 7.92 1.7

8

10

12

0.1 1 10 100
Running time [s]

(a) ARPA

10
12
14
16

0.1 1 10 100
Running time [s]

(b) USA

12

17

22

1 10 100 1000
Running time [s]

(c) Italian

11

12

13

1 10 100 1000
Running time [s]

×561

(d) North American

Fig. 5. The best solution versus the running time after launching the
algorithms 100 times. The results of RMCA is drawn with solid line, while
the GLSnode with dashed line.

solution with ||T ||V = 12.18 after 1.76 seconds, which means
RMCA is at least times 561 faster than GLSnode obtaining the
same solution quality.

V. CONCLUSION

In the paper we investigated the network-wide unambiguous
failure localization problem for single node failures, using su-
pervisory lightpaths (monitoring trails). We presented a novel
heuristic method, that uses recursive matching-contractions to
assign binary codes to the nodes, and rapidly provides feasible
solutions. Simulations were conducted both on 2-connected
randomly generated planar graphs and on some well-known
optical networks in order to evaluate the proposed algorithm’s
computation time and performance in terms of average number
of m-trails seen at each node in the network. Results show,
that RMCA find the solution with the same quality 3-4 order
of magnitude faster than the previously known best algorithm.

REFERENCES

[1] J. Tapolcai, P.-H. Ho, L. Rónyai, and B. Wu, “Network-wide local
unambiguous failure localization (NWL-UFL) via monitoring trails,”
IEEE/ACM Transactions on Networking, 2012.

[2] J. Tapolcai, P.-H. Ho, P. Babarczi, and L. Rónyai, Internet Optical
Infrastructure - Issues on Monitoring and Failure Restoration. Springer,
2014.

[3] H. Zeng, C. Huang, and A. Vukovic, “A Novel Fault Detection and Lo-
calization Scheme for Mesh All-optical Networks Based on Monitoring-
cycles,” Photonic Network Communications, vol. 11, no. 3, pp. 277–286,
2006.

[4] C. Li, R. Ramaswami, I. Center, and Y. Heights, “Automatic fault
detection, isolation, and recovery in transparentall-optical networks,”
IEEE/OSA J. Lightwave Technol., vol. 15, no. 10, pp. 1784–1793, 1997.

[5] Y. Wen, V. Chan, and L. Zheng, “Efficient fault-diagnosis algorithms for
all-optical WDM networks with probabilistic link failures,” IEEE/OSA
J. Lightwave Technol., vol. 23, pp. 3358–3371, 2005.

[6] C. Assi, Y. Ye, A. Shami, S. Dixit, and M. Ali, “A hybrid distributed
fault-management protocol for combating single-fiber failures in mesh
based DWDM optical networks,” in Proc. IEEE GLOBECOM, 2002, pp.
2676–2680.

[7] S. Ahuja, S. Ramasubramanian, and M. Krunz, “Single link failure
detection in all-optical networks using monitoring cycles and paths,”
IEEE/ACM Trans. Networking, vol. 17, no. 4, pp. 1080–1093, 2009.

[8] J. Tapolcai, L. Rónyai, E. Hosszu, P.-H. Ho, and S. Subramaniam,
“Signaling free localization of node failures in all-optical networks,” in
Proc. IEEE INFOCOM, Toronto, Canada, May 2014, pp. 1860–1868.

[9] J. Edmonds, “Maximum matching and a polyhedron with 0, 1 vertices,”
J. of Res. the Nat. Bureau of Standards, vol. 69 B, pp. 125–130, 1965.

[10] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proc. Int. Network Optimization
Conference (INOC), April 2007.

