
Telecommun Syst (2015) 60:485–502
DOI 10.1007/s11235-015-0006-9

On providing fast protection with remote loop-free alternates
Analyzing and Optimizing Unit Cost Networks

Levente Csikor · Gábor Rétvári

Published online: 19 March 2015
© Springer Science+Business Media New York 2015

Abstract Up to not so long ago, loop-free alternates (LFA)
was the only viable option for providing fast protection in
pure IP and MultiProtocol Label Switching–Label Distribu-
tion Protocol networks. Unfortunately, LFA cannot provide
protection for all possible failure cases in general. Recently,
the Internet Engineering Task Force has initiated the remote
loop-free alternates (rLFA) technique as a simple extension
to LFA, to boost the fraction of failure cases covered by fast
protection. Before further standardization and deployment,
however, it is crucial to determine to what extent rLFA can
improve the level of protection against single link or node
failures in a general IP network, as well as to find optimiza-
tionmethods to tweak a network for 100% rLFA coverage. In
this paper, we take the first steps towards this goal by solving
these problems in the special, but practically relevant, case
when each network link is of unit cost. We also provide pre-
liminary numerical evaluations conducted on real IP network
topologies, which suggest that rLFA significantly improves
the level of protection, andmost networks need only 2–3 new
links to be added to attain 100% failure case coverage irre-
spectively of whether link or node protection is considered.
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1 Introduction

In recent years, high availability has become an important
factor in operational networks, not just due to the require-
ments of the increasing number of real-time applications
(VoIP, IPTV, online-gaming, etc.) but also for the standard
Internet applications used day by day. Low latency is very
important even if one only waits for a single web page
to download, but network outages might cause intolerably
long time intervals of service disruptions [33], and hence,
increased latency. Installing added redundancy in thenetwork
topology, as well as a sophisticated failuremitigation scheme
at the routers, has the potential to reduce the latency caused
by component failures, and consequently, increase network
revenue [46]. In order to reduce latency and increase the avail-
ability in service provider networks, therefore, it is essential
for operators to deploy network functionality to recognize the
failure in a timely fashion and reroute the affected packets
instantly around the failed component.

Formerly, the intra-domain routing protocols (OpenShort-
est Path First [37] or Intermediate System To Intermediate
System [23]) used to handle failures. The failure information
was distributed throughout the network in order to notify each
router to recalculate shortest paths with the failed component
removed from the topology. This process can take between
150 ms and a couple of seconds, depending on network
size and routers’ shortest path calculation efficiency [24,29].
Clearly, this recovery time is beyond what real-time applica-
tions require.

Therefore, the IETF defined a framework, called IP Fast
ReRoute (IPFRR [43]), for native IP protection, in order
to reduce failure reaction time to tens of milliseconds in an
intra-domain, unicast setting. In order to achieve this goal,
the IPFRR techniques are based on local rerouting and pre-
computed detours [43]. This allows instant reaction to the
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failure and enables the routing protocol to converge in the
background.

In the past few years, many IPFRR proposals have
appeared to solve this problem. Unfortunately, the majority
of them requires additional management burden, complexity,
and non-standard IP forwarding functionality [2,8,16,17,31,
47] to existing routing protocols, evading the possibility to
be eventually applied in commercial routers.

Yet, there is an IPFRRmethod, called loop-free alternates
(LFA) [5], which has already made its way into commer-
cial routers [10,26]. LFA is simple, standardized and already
implemented. However, it has a significant drawback: it does
not guarantee protection for all possible failure cases, due to
strong dependency on actual topology and link costs. Exten-
sive simulations and numerical studies have shown that LFA
can only protect 75–85% of the link failures and 50–75% of
the node failures, respectively.

To improve the level of fast protection provided by LFA,
the IETF has published a generalization of LFA, called the
Remote LFA (rLFA) IP Fast ReRoute framework [7]. This
method is an extension to the basic LFA that provides addi-
tional backup connectivity when none can be provided by
the basic mechanisms. But even if it provides higher failure
coverage, there still exist networks that are not sufficiently
protected by rLFA.Unfortunately, as of now there is no infor-
mation available about how it performs in different network
topologies, what the fundamental lower and upper bounds on
failure case coverage are, or how this can be improved [41].

In the present paper, we make the first steps in this direc-
tion. As a first approach, we shall limit our attention to the
special case when link costs are uniform. Our earlier studies
on LFA [41] showed that the protection capabilities of LFA
crucially depend on both the graph topology and the link
costs of the underlying network. Unfortunately, it turned out
extremely difficult to consider both at the same time, due
to the complexity of the related graph theoretical questions.
Therefore, it has proven beneficial to study graph topologi-
cal concerns separately from the effects of link costs. In the
present paper, we follow the same course: first, we initiate the
analysis for remote LFA in graphs with unit costs, and in a
subsequent study we shall attempt to generalize our results to
arbitraryweighted graphs. Considering unweighted graphs is
fruitful for a number of further reasons. The unit cost case is
highly relevant in real-world networks and, as shall be shown,
results for LFA can only be generalized to rLFA under the
unit cost assumption. Finally, we also found this problem
particularly appealing from a theoretical point of view.

This paper is essentially a crystallization of the ideas in our
preliminary study on rLFA [14] and an extension of the rLFA
specification [7], as well as our analysis, from the model of
single link outages to the crucial case of single node failures.
In the first part, we provide the first ever basic graph theoret-
ical toolset for analyzing rLFA failure case coverage in the

case when link costs are uniform, and we establish a suffi-
cient and necessary condition for a network to have 100%
rLFA failure coverage. We also study the “bad cases” for
rLFA, in which failure coverage is particularly poor. Build-
ing on [7], we distinguish between plain and extended remote
LFA and we quantify the benefits that come from the usage
of extended rLFA.

Our analysis shows that many practically important graph
topologies do not admit 100% rLFA failure coverage, espe-
cially with plain rLFA. Recently, LFA network optimization
methodswere proposed [13,15,38,40,41] to optimize certain
aspects of the network to obtain maximal failure coverage.
The second part of the paper is devoted to generalize these
methods to rLFA. In particular, we study the problem of opti-
mizing a network topology for better rLFA protection andwe
introduce a set of algorithms for modifying the network, by
adding the smallest number of new links, to improve cover-
age to 100%.

The main contributions in this paper are as follows:

– We develop a set of elemental graph theoretical rLFA
tools, which facilitates for analyzing rLFA failure cover-
age in general networks.We also extend the rLFA specifi-
cation [7], originally defined for single link failures only,
to the relevant case of single node failures, and we gen-
eralize our toolset to this very case as well. Furthermore,
we reveal the deep relations between LFA and rLFA and
we show the conclusions that can be drawn if information
about one of them exists.

– Using this toolset, we provide a comprehensive analysis
of rLFA failure case coverage under the assumption that
network links are of uniform cost. We give sufficient and
necessary conditions for full rLFA failure coverage in the
case of single link as well as node outages. An attempt is
also made to find lower bounds on failure case coverage.
In particular, we find that in 2-node-connected graphs
rLFA protection coverage for single link failures can go
down to 50%, or to 33% for 2-edge-connected networks,
and for node failures rLFA coverage can totally zero out
in certain cases.

– To help inherently poorly protected networks, we study
the rLFA graph extension problem in detail. This prob-
lem asks to augment the networkwith new, unit cost links
to attain complete rLFA protection. In particular, we pro-
pose a complete family of heuristics in order to facilitate
for picking the best approximation algorithm for the par-
ticular network under consideration.

– We provide an extensive numerical evaluation of rLFA
failure case coverage and rLFA graph extension meth-
ods on a wide range of real-world network topologies.
Crucially, we find that some networks have full rLFA
protection without any modifications. For the rest, the
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proposed heuristics turn out very effective in improving
rLFA failure protection.

The rest of the paper is organized as follows. Section 2
gives a summary on the related works, Sect. 3 gives an intro-
duction the rLFA, and then Sect. 4 presents the essential for-
mal definitions. Section 5 gives a useful mathematical model
and Sects. 6 and 7 are devoted to a graph theoretical remote
LFA failure coverage analysis of many important classes of
graph topologies. Section 8 discusses the remote LFA graph
extension problem and describes numerical results on many
real-world network topologies. Finally, in Sect. 9 we con-
clude our work and sketch future research directions.

2 Related works

Protection against network failures has become one of the
most compelling problems of today’s internet. It turned out
that more than 85% of unplanned failures affect only links
and almost the half of these failures are transient [33], i.e.,
50% of all failures last less than a minute [22]. Unfortu-
nately, such transient failures are very difficult to handle with
current intra-domain routing protocols, like OSPF [37] or IS-
IS [23]. For instance, just a single flapping interface can keep
all other routers in the network busy, since it can cause link
state flooding and significant computational overhead due
to the constant need for shortest paths recalculations. This
drawback comes directly from the fundamental design phi-
losophy of the protocol, since, in case of a failure, it tries
to make the network topology up-to-date in order to not to
cut off packet forwarding. Accordingly, after a failure, an
adjacent router recognizes it and notifies every other router
throughout the network about the failure in order to induce
the recalculation of the shortest paths with the failed compo-
nent removed. During this re-convergence process packets
are dropped due to invalid routes.

To overcome these issues, IP Fast ReRoute Framework
(IPFRR, [43]) was defined by the IETF (Internet Engineer-
ing Task Force). IPFRR techniques are based on two major
principles: local rerouting and precomputed detours. Local
rerouting means that instead of notifying every other router
about the failure, the adjacent router to the failure tries to
locally solve the problem, i.e., reroute the packet to another
node, this way bypassing the failed component. Precomputed
means that the mechanism is proactive and alternate routes
are installed long before any failure occurs. Thus, the IPFRR
techniques convert the restoration scheme, standard in IP net-
works today to handle outages, into a faster proactive protec-
tion mechanism [45].

Lately, the IETF defined a basic specification for IPFRR,
called loop-free alternates (LFA) [5]. In LFA, when the con-

nectivity to a next-hop1 is lost all the traffic is rerouted to
an alternate next-hop, called a Loop-free Alternate, that still
has a path to the destination, which is unaffected by the fail-
ure. These alternate next-hops are selected in a way as to
guarantee that the packet will not be passed back, since that
would lead to an IPFRR loop. However, such alternate next-
hops do not always exist, depending on the actual topology
and link costs. Therefore, in most network topologies not all
next-hops can be protected with LFA, leaving the network
vulnerable to certain failure scenarios.

In the past few years, many IPFRR proposals have
appeared to guarantee 100% failure case coverage in every
network topology, however, the majority of them requires
additional complexity, non-standard IP forwarding function-
ality, explicit signaling, etc.

The Failure-carrying Packets (FCP [30]) framework does
not just deal with single node or link failures, but it can also
guarantee delivery if simultaneous failures are present in the
network. Instead of having an extremely high number of pre-
computed paths, in FCP all routers have a consistent view
of operational links, called a Network Map. Because of its
consistency, all that is required to be carried by the packets
is information about which of these links have failed.

In the case of O2 routing [42], each router has alternate
paths through at least two distinct next-hops to each destina-
tion, in order to facilitate local failure reaction and loop-free
forwarding. Unfortunately, the network must meet a neces-
sary condition, which states that each node has to form at
least one triangle.

As another approach, Kvalbein et al. proposed Multiple
Routing Configurations (MRC, [2]), wherein a small set of
backup network configurations is used. Thus, in case of a
failure a nearby router detects it and marks the packet with a
backup configuration identifier designating an overlay topol-
ogy that does not contain the failed component. They also
proved that on average the number of such backup config-
urations is usually below four. A similar approach is [36],
wherein the protection and restoration is provided by distrib-
utedmultipath routing. Themain idea is that if multiple paths
exist in the network due to load balancing, then they can be
used as backup routes as well.

The so calledProtection routing scheme, proposed in [28],
is based on a centralized control over the routing tables. A
central server pre-computes forwarding decisions for com-
mon failure scenarios and download these into the routers.
Thus, if a failure occurs, the appropriate new forwarding state
is already available locally.

Another fast resilience scheme, called Failure Insensitive
Routing (FIR [31]), uses interface specific forwarding. FIR
handles only link failures, while a subsequent scheme of the

1 In IP routing, the next router along the shortest path to a destination
is called next-hop.
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same authors, FIFR [47], deals with node failures as well.
The main idea of these concepts is that if a node receives a
packet through an unusual interface, it can infer implicitly
that, due to a failure, the packet has not traveled along its
default shortest path. Unfortunately, interface specific for-
warding is generally not available in IP routers today.

In the method calledNot-via addresses [8], when a failure
occurs then the packets are forwarded on an explicitly defined
detour, which definitely avoids the failed component, i.e., if
an arbitrary node s wants to send a packet to a destination
node d, and the link to the next-hop n or the next-hop n itself
fails, then s has to pass the packet towards d not-via n. Thus,
this mechanism requires additional (not-via) addresses for
which there is no standardized protocol, moreover it brings
extra complexity into routing if the additional IP header does
not fit into the MTU (Maximum Transfer Unit),2 which can
cause packet fragmentation and time-consuming reassembly
at the tunnel endpoint. To break down the management bur-
den and computational complexity, a lightweight version of
Not-via [17] was later proposed, which is based on the con-
cept of redundant trees [34].

DisPath [4] can protect every single link or node failure
in networks and, similarly to LFA, it has low complexity and
it does not modify the IP packets. Unfortunately, the compu-
tation of backup paths relies on a reverse shortest path algo-
rithm, crucially limiting its applicability as currently OSPF
and IS-IS implements Dijkstra’s standard shortest path algo-
rithm only.

A different approach is to use explicit signaling to notify
routers about the failures [12,21]. The advantage of this is
that it avoids the need of the modification to standard IP
forwarding, but in order to make it work, it requires separate
signaling mechanism only for IPFRR.

Note that telecommunication networks are usually multi-
layered, therefore the physical failure of a link may cause
failures in a set of virtual links in the overlay topologies.
This case is termed as Shared Risk Link Group (SRLG),
which also has to be covered. Therefore, in order to provide
resiliency in such cases, [19] use SRLG-disjoint path pairs
in optical networks to avoid the failures.

Due to the complexity of the aforementioned techniques, it
is no wonder that so far only LFA has made its way into com-
mercial IP routers. As mentioned above, however, LFA can-
not protect each next-hop in all networks. As a workaround,
the IETF suggested to use LFA and Not-via side-by-side in
the cases when the former does not deliver sufficient levels
of protection [5,8]. Nevertheless, the authors in [35] proved
that in real networks, where the sheer size of the IP for-
warding tables and traffic engineering also play an important

2 In computer networking, the maximum transmission unit (MTU) is
the size of the largest protocol data unit that the layer can pass onwards.

role, this combined method does not provide any significant
advantages over pure Not-via.

As a consequence of the above considerations, there have
been proposals lately to attempt to reach full failure coverage
using solely loop-free alternates. The main idea is, instead
of extending the capabilities of LFA, modify the underly-
ing topology instead. Some research works studied the ques-
tion of how to augment the network with the smallest num-
ber of new links to improve the failure coverage [38,41],
while others [13,15,40] attempted to optimize IGP link costs
in order to generate new loop-free alternates through alter-
ing default shortest paths. In the former approaches, it was
proved that an exiguous number of additional links can sig-
nificantly improve failure coverages in most real network
topologies. Therefore, for those operators whose budget can
afford adding new physical links to the topology, these may
provide good solutions. In those networks, however, where
reconfiguring link costs is not an option due to load balancing
and traffic engineering issues, cost optimization may not be
a good approach.

Recently, the IETF has published a generalization of LFA,
called the Remote LFA [7] in order to improve the failure
coverage provided by simple LFA. Since it is based on LFA,
it is already available in today’s routers [11]. The main idea
is that, in case of a failure, not only direct neighbors can
be used as a potential loop-free alternate but further remote
nodes as well. These remote LFA staging points are reached
trough IP tunnels, but these tunnels are restricted to short-
est paths as well. Note that in an MPLS/LDP (MultiProtocol
Label Switching–Label Distribution Protocol) enabled net-
work these tunnels are freely accessible via a simple label
stack. Yet, even if remote LFA can produce higher failure
case coverage than pure LFA, the level of this protection still
depends heavily on the underlying topology and link costs.
The main objective of this paper is, consequently, to quantify
this dependence using a thorough graph-theoretical analysis
and propose new network optimization techniques to tweak
a network topology towards better remote LFA protection.

Note that IPFRR is not the only option for fast protec-
tion in IP networks, since for MPLS different fast protection
schemes have been proposed [1,20,25] and already standard-
ized [39]. These methods, however, are only available in net-
works with the Resource Reservation Protocol–Traffic Engi-
neering (RSVP-TE) extension deployed. Many operators, on
the other hand, rely on MPLS/LDP exclusively, which uses
the IP control plane for routing information and hence depend
crucially on pure IP protection schemes.

3 Remote loop-free alternates

In loop-free alternates, the backup routes are precomputed
and installed in the router as the backup for the primary
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routes. Once a router detects a link or adjacent node failure,
it switches to the backup route to avoid traffic loss. Whole
LFA considers only physically adjacent routers for backup
routes, remote LFA allows the backup next-hop to be more
than one hop away. After a failure, an adjacent router recog-
nizes it and tries to find a (remote) node whose shortest path
to the destination is not affected by the failed component.
If such a router is found, then packets will be forwarded to
it. Remote LFA relies on tunnels to provide additional log-
ical links towards backup next-hops. After the remote node
receives the package it sends it towards the primary destina-
tion. Note that the tunnelled traffic is restricted to shortest
paths just like “normal” traffic, hence the tunnel must avoid
the failure as well. Perhaps the easiest way to understand
remote LFA, and how it differs from basic LFA, is through
an example. Consider the network depicted in Fig. 1a and
suppose that router s wishes to send a packet to destination
d.

The next-hop of s along the shortest path towards d is a. If,
however, the link (s, a) fails, then node s has to find an alter-
native neighbor to pass on the packet to. It cannot send the
packet to, sayb, asb has anECMP (EqualCostMultiple Path)
to destination d and, as it does not know about the failure, it
can send the packet back to s causing a loop. Therefore, s has
no neighbor thatwould not pass the packet back to it if chosen
as a bypass, so in this case the given source–destination pair
cannot be protected via standard LFA. However, if a tunnel
is created between s and e (marked by black dashed line in
Fig. 1a), then e, now being an indirect neighbor of s, would
become an LFA for d, thereby protecting the link (s, a).

Consequently, when a link cannot be entirely protected
with local LFA neighbors, the protecting router seeks the
help of a remote LFA staging point. Note that this tunnel is
only used as a detour, so it does not affect the normal flow
of traffic in any ways. There are numerous tunnelling mech-
anisms which fulfill the requirements of this design. In an
MPLS/LDP (Multiprotocol Label Switching-Label Distrib-
ution Protocol [3]) enabled network, for instance, a simple
label stack can be used to provide the required tunnel without
any additional modification to the IP header of the packets.

Next, consider Fig. 1b where node s remains the source
but node d ′ becomes the destination and link (s, b) fails.
Then (s, b) cannot be protected for a lack of a suitable tun-
nel, since all nodes whose shortest path does not go through
(s, b) can only be reached from s through (s, b) itself. For
a formal definition, see the next section. This suggests that
while the use of rLFA definitely can provide higher protec-
tion level against link failures than pure LFA, it still does
not facilitate full protection for all failure cases in a general
topology.

Next, examine how all the previously mentioned prop-
erties are changed when node protection is also taken into
account. Consider the network depicted in Fig. 2.

Suppose that node s wants to send a packet to destination
node d. The next-hop of s to d is node e. One can easily check
that if link (s, e) goes down then node n and m are suitable
repair tunnel endpoints, since the shortest paths from them
to node d avoid the failed component. However, if not only
the link (s, e) fails but the node e itself, then node m can be
the one and only remote loop-free alternate, since node n has
an ECMP shortest path to node d through the failed node e.
It should also be noted that in case of node protection we
have to deal with the so called last-hop problem. This says
that if the destination node itself goes down, then it obviously
cannot be protected. Therefore, node protection between two
neighboring nodes is undefined.

4 Model formulation

Ourmathematical model for studying rLFA is as follows.We
model the network topology by a simple, undirected graph
G(V, E), withV being the set of nodes and E the set of edges.
Let n = |V | and m = |E |, and denote the complement edge
set with E . We assume that links are bidirectional and point-
to-point. As mentioned earlier, we further assume that each
link in G is of the same unit cost, as this assumption allows
us to study the purely graph theoretical aspects of rLFA sep-
arately from the effect of link weights. In a subsequent paper,
we plan to relax this assumption. Furthermore, we presume
that each node has a well-defined next-hop towards each des-
tination even if more than one equal cost shortest paths exist.
Since an arbitrary link can only be protected if the graph of
the network is 2-edge-connected, we assume this minimum
topological requirement for link-protecting case. For the case
of node protection, we also assume the graph to be 2-node-
connected. We use the notation dist(u, v) for any u, v ∈ V
to describe the length of the shortest path from u to v. Let
neigh(s) denote the set of nodes which are the neighbors of
an arbitrary node s. Furthermore, LFA(x, y) denotes the set
of nodes protecting the (x, y) source–destination pair.

During a failure, the repair tunnel endpoint needs to be a
node in the network reachable from the source without tra-
versing the failed component. In addition, the repair tunnel
endpoint needs to be a node fromwhich packetswill normally
flow towards their destinations without being attracted back
to the failed component. Correspondingly, in the case of link
failure the set of routers which can be reached from a source
without traversing the failed link is termed the P-space [6]
of the source with respect to the failed link (hereafter PLP,
where LP refers to link-protecting case). Since the source
router will only use a repair path when it has detected the fail-
ure of the link, the initial hop of the repair path needs not be
subject to the source’s normal forwarding decision process.
Therefore, the term extended P-space (hereafter Pe

LP) was
also defined, which is the union of the PLPs of each of the
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Fig. 1 Sample network
topologies with uniform link
costs. Solid lines mark the IP
network topology, while thick
dashed lines mark a tunnel

a s b d

d c e f

PLP of s with respect to link (s, a)
QLP of d with respect to link (s, a)

(a) Higher protection can be attained with rLFA

a s b d

d c e f

PLP of s with respect to link (s, b)
QLP of d with respect to link (s, b)

(b) A basic situation that cannot be protected with rLFA either

Fig. 2 A sample network
topology for illustrating how
node protection differs from link
protection

n m

s e d

PNP of s with respect to node e

QLP of d with respect to link (s, e)
QNP of d with respect to node e

source’s neighbors. The usage of Pe
LP may enable the source

router to reach potential repair tunnel endpoints that were
otherwise unreachable. Furthermore, the set of routers from
which the destination can be reached without traversing the
failed link is termed the Q-space (hereafterQLP) of the des-
tination with respect to the failed link. The intersection of the
source’s PLP and the destination’s QLP with respect to the
failed link defines the viable repair tunnel endpoints, known
as PQLP-nodes, which are practically the remote LFAs. As
can be seen, for the case of the example network depicted in
Fig. 1 there is only one node (e) that protects the link (s, a),
assuming that node s wants to send a packet to node d as des-
tination. However, considering d ′ as the destination the PLP

and QLP turn out different. Now, there is no intersection of
s’ PLP and QLP of d ′, thus viable PQLP-nodes do only exist
if Pe

LP is used, since if s can pass the packet to c, then node
c will not pass the packet back and the packet transmission
will avoid the failed (s, b).

Next, we extend these definitions to the case of node fail-
ures. Note that the rLFA specification [7] does not consider
this case, so ours is the first such extension. As it turns out,
the case of node protection hardly differs from the case of
link protection. When the next-hop fails, the possible repair
tunnel endpoint needs to be a (remote) node,which is reached
from the source without traversing that failed next-hop itself
(instead of only the link to it, as before). Hence, the set
of such routers is termed the PNP (where the subscript NP

refers to node-protecting case) of the source with respect
to the failed node. As it was in the case of link protec-
tion, the term extended P-space (hereafter Pe

NP) can also be
defined as the union of PNPs of each of the source’s neigh-
bors. The set of routers whose shortest path to destination
avoid the failed node is termed the QNP of the destination
with respect to the failed node. Here again the intersection of
the source’s PNP and the destination’s QNP with respect to
the failed node defines the viable repair tunnel endpoints,
known as PQNP-nodes. For the sake of easy comprehen-
sion, see Fig. 2 and consider node s as source and node d as
destination.

In this work, we slightly diverge from the terminology of
the specification [7] and we say that a node is remote LFA if
it is in the intersection of the “simple” PLP (PNP) and QLP

(QNP, respectively) and we shall use the term “Extended
remote LFA” henceforth when Pe

LP (Pe
NP) is also to be

considered for defining the rLFA nodes, i.e., PQLP-nodes
(PQNP-nodes). In the rest of the paper, rLFALP(x, y) denotes
the set of nodes that protect source x and destination y
with remote LFA if the link to the next-hop fails. Similarly,
rLFANP(x, y) marks the set of nodes protecting source x
and destination y with remote LFA if the next-hop itself
fails.

Most of our analysis will be given for “plain” rLFA, as this
technique can be easily implemented and deployed since it
does not require profound modifications to the forwarding
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plane. Extended rLFA, on the other hand, requires sophisti-
cated functionality. Thus, we expect, implementations to pro-
vide only the plain rLFA initially and so we mostly treat this
case, andonly highlight some important aspects of “Extended
remote LFAs”.

From the above discussion, it is clear that in general not
all nodes have LFA or even remote LFA protection to every
other node. To measure link and node-protecting rLFA cov-
erages in a graphG, we adopt and redefined the simplemetric
from [5]:

μLP (G) = #rLFALP protected (s, d) pairs

#all (s, d) pairs
(1)

μN P (G) = #rLFANP protected (s, d) pairs

#all non-adjacent (s, d) pairs
(2)

For LFA, the coverage ηLP(G) and ηNP(G) can be
defined in a similar way.

5 A mathematical toolset for remote LFA

Below,we give some basicmachinery to handle remote LFAs
somewhat more plausibly than what is provided by the mere
definitions of P-spaces and Q-spaces. We shall separate the
discussion into two parts. First, in line with the specifica-
tion [7], we consider only single link failures. Then, in the
second part we extend our techniques to single node failures
as well.

5.1 Link-protecting case

An arbitrary failed link along the shortest path between a
source and a destination can only be protected if the inter-
section of PLP of the source and the QLP of the destination
is not empty. First, we show an alternative characterization
for r LFALP that, as shall be seen, is more amenable to the-
oretical analysis. Consider the below reformulation of this
requirement in terms of the shortest path distance function
dist .

Observation 1 For a source node s and next-hop e, some
n ∈ V is in PLP(s, e) if and only if

dist(s, n) < dist(s, e) + dist(e, n) , (3)

and some n ∈ V is in QLP(s, d) if and only if

dist(n, d) < dist(n, s) + dist(s, d) . (4)

One can easily see, that (4) is the basic loop-free criterion
of link-protecting LFAs [5], while (3) means that the repair
tunnel cannot traverse the failed link. The notion ofPe

LP could
also be expressed with distance functions:

s e q d

n

Fig. 3 Illustration for the proof of Lemma 1

Observation 2 For a source s and next-hop e, some n ∈ V
is in the extended Pe

LP(s, e) if and only if ∃v ∈ neigh(s) :
dist(v, n) < dist(v, s) + dist(s, e) + dist(e, n).

It should be noted that the conditions above hold for arbi-
trary weighted graphs as well.

Next, we formulate an important corollary of the previous
observations. In particular, we show that if an arbitrary node
on the shortest path between a source and a destination is
rLFALP protected, then every further node along that shortest
path is rLFALP protected as well.

Lemma 1 Let (s, d) be a source–destination pair and let
q be a node along the default shortest path from s to d. If
rLFALP(s, q) �= ∅, then rLFALP(s, d) �= ∅.
Proof Consider Fig. 3 and suppose node e is the next-hop
from s to d. The wavy lines denote the existence of a path
between the given nodes. The thick line indicates the shortest
path from s to d. For n to be in rLFALP(s, d), it has to
fulfill the conditions stated inObservations 1. First, it satisfies
(3) for (s, d) since PLP does not depend on the destination
node. Additionally, in case of link protection it only needs to
satisfy (4), notably dist(n, d) < dist(n, s) + dist(s, d). We
know that dist(n, q) < dist(n, s) + dist (s, q) and due to
the triangle inequality3 dist(n, d) ≤ dist(n, q) + dist(q, d).
Therefore, dist(n, d) < dist(n, s)+dist(s, q)+dist(q, d) ⇒
dist(n, d) < dist(n, s) + dist(s, d). 	


An important consequence of Lemma 1 is the simple
observation that a graph has full rLFALP protection, if and
only if each node has an rLFALP to each of its next-hops.

Corollary 1 Let G be a graph with unit link costs. Then,
μ(G) = 1, if and only if for each (u, v) ∈ E, u has an
rLFALP to v and v has an rLFALP to u.

Next, we show that there is a deep connection between basic
link-protecting LFA (LFALP) and rLFALP in unit cost net-
works.

Theorem 1 Let G(V, E) be a graph with unit link costs,
let (s, d) be a source–destination pair, let e be the default

3 The triangle inequality states that for any triangle, the sum of the
lengths of any two sides must be greater than or equal to the length of
the remaining side. It is one of the defining properties of the distance
function, which is used in shortest path routing.
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next-hop of s to d, and let u be an arbitrary node with u ∈
neigh(s), u �= e. Then, u ∈ rLFALP(s, d) if and only if
u ∈ LFALP(s, d).

Proof First, we verify the forward direction. Easily, u ∈
rLFALP(s, d) implies u is inQLP, which precisely coincides
with the condition for u to be a link-protecting LFA. Second,
we check the reverse direction. If u ∈ LFALP(s, d), then u,
by definition, fulfills (4). In addition, it also satisfies (3) due
to the assumption u ∈ neigh(s), because in a uniform cost
network the default shortest path between adjacent nodes is
through the direct link, and hence the s → u shortest path
always avoids the (s, e) link. 	


5.2 Node protection

In this subsection, we extend the previous statements to node
protection. Now, suppose that not the link between an arbi-
trary source s and it’s next-hop e fails but the next-hop e
itself. It is easy to see from the above discussion that the con-
dition for PNP remains the same as for PLP, thus only QNP

has to be re-defined.

Observation 3 For a source s, next-hop e and destination
d, some n ∈ V is in QNP(s, d) if and only if

dist(n, d) < dist(n, e) + dist(e, d) . (5)

Similarly, it is easy to observe that (5) is the basic loop-
free criterion of node-protecting LFAs [5]. The concept of
Pe
NP could also be expressed as follows:

Observation 4 For a source s and next-hop e, some n ∈ V
is in Pe

NP(s, e) if and only if ∃v ∈ neigh(s) : dist(v, n) <

dist(v, e) + dist(e, n).

Again, note that these conditions also hold for arbitrary
weighted graphs.

Next, we reformulate Lemma 1 and show that if an arbi-
trary node on the shortest path between a source and a des-
tination is rLFANP protected, then every further node along
that shortest path is rLFANP protected as well.

Lemma 2 Let (s, d) be a source–destination pair and let
q be a node along the default shortest path from s to d. If
rLFANP(s, q) �= ∅, then rLFANP(s, d) �= ∅.
Proof Consider example network depicted in Fig. 3 again
and suppose again node e is the next-hop from s to d. For
n to be n ∈ r LFANP(s, d), it has to fulfill (3) and (5).
As it was in the link-protecting case, we do not have to
deal with PNP since it does not depend on the destina-
tion node. We only have to verify the condition of QNP:
dist(n, d) < dist(n, e)+dist(e, d). Since n ∈ rLFANP(s, q),

then dist(n, q) < dist(n, e) + dist(e, q), and due to tri-
angle inequality dist(n, d) ≤ dist(n, q) + dist(q, d) ⇒
dist(n, d) < dist(n, e)+dist(e, q)+dist(q, d) ⇒ dist(n, d)

< dist(n, e) + dist(e, d), which completes the proof. 	

Next, we show that, analogously to the link protecting

case, node-protecting LFAs and rLFAs are deeply related to
each other in unit cost networks.

Theorem 2 Let G(V, E) be a graph with unit link costs,
let (s, d) be a source–destination pair, let e be the default
next-hop of s to d, and let u be an arbitrary node with u ∈
neigh(s), u �= e. Then, u ∈ rLFANP(s, d) if and only if
u ∈ LFANP(s, d).

The proof of the theorem goes along similar lines as the
proof of Theorem 1 and so we do not present it herein.

6 Analysis of extended remote LFA

Next, we digress a little to show that extended rLFAs are a
powerful tool for link-protection. In particular, first we show
that in case of link failures extended rLFALP ensures 100%
failure coverage in every network.

Theorem 3 Let G be an arbitrary 2-edge-connected graph
with uniform link costs and suppose that remote LFA can use
the Pe

LP option. Then, in case of link failures μ(G) = 1.

Proof We show that for each edge (u, v) ∈ E, u has a remote
LFA to v (and vice versa). This will mean that every node
has an rLFALP to each of its next-hops, which guarantees
μ(G) = 1 by Corollary 1. Since G is 2-edge-connected,
we know that (u, v) is contained in at least one chordless
cycle. Let the length of this cycle be k. If k is odd, then
the single node at distance k−1

2 from v along the cycle is a
remote LFA to u. If, on the other hand, k is even, then the
PLP(u, (u, v))∩QLP(u, v) is empty. Observe, however, that
the single node of distance k

2 from u is contained both in
QLP(u, v) and the extended PLP(w, (u, v)), where w is the
neighbor of u other than v along the cycle, and so it is a
remote LFA in terms of the Pe

LP option. This completes the
proof. 	


Consequently, in general it can be stated that if remoteLFA
implementations support extendedP-space then unit cost net-
works have full protection against single link failures. This
may be an important factor to consider by an operator will-
ing to deploy rLFA and to an IP device vendor to implement
extended rLFA in its router products.

However, when node failures are also taken into account,
then extended P-space with respect to the failed node is not
always enough to guarantee 100% failure coverage in every
network. As a proof, consider the simple network depicted
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Fig. 4 Illustration of a network
with different protection
scenarios

e a b

d c s

gf h

PLP with respect to link (s, c)
QLP with respect to link (s, c)
Pe
LP with respect to link (s, c)

(a) Pe
LP provide full rLFA protection against single link failures

e a b

d c s

gf h

PNP with respect to node c

QNP with respect to node c

Pe
NP with respect to node c

(b) Pe
NP cannot guarantee full protection against single node failures

in Fig. 4. Assume that node s wants to send a packet to node
d. The default shortest path goes through node c.

Under the assumption that only the link (s, c) fails (see
Fig. 4a), then it can be protected since PLP ∩ QLP �= ∅ (b ∈
PQLP-nodes). Next, consider the case of Fig. 4b where the
next-hop c went down. The potential repair tunnel endpoints
are in PQNP-nodes, which is again the intersection of PNP of
s and QNP of d. Unfortunately, this remains ∅ even if using
the extended P-space Pe

LP would be an option. This means
that there are networks that cannot be 100%protected against
node failures by nor “plain” neither extended remote LFA.

From the above discussion, one can easily see that the
requirements of nodeprotection are stricter than those for link
protection. We can summarize our observations as follows.

Lemma 3 PLP = PNP but Pe
NP ⊆ Pe

LP, and QNP ⊆ QLP.

Proof First, note that it was already concluded that the pro-
tection scheme does not affect P-spaces. Second, to prove
the connection between Pe

LP and Pe
NP we use Observa-

tions 2 and 4. In the case of Pe
NP, there is a node n:

dist(v, n) < dist(v, e)+dist(e, n), where v ∈ neigh(s) and e
is the default next-hop.Due to triangle inequality dist(v, e) ≤
dist(v, s) + dist(s, e), and using this in our formal definition
of Pe

NP results that dist(v, n) < dist(v, e) + dist(e, n) ≤
dist(v, s) + dist(s, e) + dist(e, n), which corresponds to the
formal definition of Pe

LP. Therefore, Pe
NP ⊆ Pe

LP. Third,
since QLP and QNP are actually the loop-free criteria of
link and node-protecting LFAs, respectively, the property
QNP ⊆ QLP is inherited from pure LFA. 	


Hereafter, the terms PLP and PNP will be used without
subscript to highlight that these sets do not differ under link
protection and node protection.

7 Analysis of “plain” remote LFAs

Next, we return to the case of plain remote LFAs as this is the
option that is expected to be supported first by commercial
routers. Hence, in the rest of the paper we consider only the
standard definitions for Ps, QLP and QNP.

We give a graph-theoretical characterization of rLFA cov-
erage, as measured by μLP(G) and μNP(G). Our main aim
is to identify the attainable lower and upper bounds of plain
rLFA failure coverage against both link and node failures.
We describe some methods to easily calculate failure cov-
erages in different families of graph topologies notable in
building resilient networks. In the course of the analysis, our
aim is to generalize previous propositions stated for LFAs in
[13,40,41] to rLFA. First, we deal with single link failures,
then in the second subsection we focus on node protection
as well.

7.1 Link protection

7.1.1 Graphs with good coverage

Network operators facing with the challenge of deploying
remote LFA need to ask the question, whether their current
network topology is amenable to rLFA or not. Therefore, it
is crucial to separate graph topologies that are “good” for
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rLFALP (i.e., the ones with μLP(G) = 1) away from those
that attain a particularly low coverage. First, we characterize
the good cases for rLFALP.

Theorem 4 Let G be an undirected, simple graph with uni-
form link costs. Now, μ(G) = 1, if and only if for each
(i, j) ∈ E : ∃n �= i, j so that dist(i, n) = dist ( j, n).

Proof The result comes from applying (3) and (4) directly
to (i, j). Therefore, PLP can be defined as dist(i, n) <

dist(i, j)+ dist( j, n), whileQLP as dist( j, n) < dist(n, i)+
dist(i, j). Since link costs are unit cost, then dist(i, j) = 1,
accordingly dist(i, n) < 1 + dist( j, n) and dist( j, n) <

dist(n, i) + 1 → dist( j, n) + 1 < dist(i, n) < dist( j, n) +
1 ⇒ dist(i, n) = dist( j, n). The backward direction of the
proof comes from Corollary 1. 	

Notable graph topologieswith 100%failure coverage include
chordal graphs [18] (see Fig. 5d), infinite grids (see Fig. 5b)
and “Möbius ladder” topologies (see Fig. 5c).

7.1.2 Worst-case graphs with rLFALP

In the following, we turn to discuss lower bounds for
rLFALP, that is, we seek worst-case graphs, whose cover-
age against single link failures is particularly poor.

It has been observed previously that quintessential worst-
case graphs for IPFRR are rings, i.e., cycle graphs in which
all nodes are of degree two [9,16]. Consequently,we consider
odd rings first, and then we shall treat even rings. Before that,
we repeat a previous proposition from [41], which proved the
lower bounds on the failure case coverage of link protecting
LFA, denoted therein by ηLP(G):

Proposition 1 For an even ring on n nodes ηLP(G) = 1
n−1 ,

and for an odd ring on n nodes ηLP(G) = 2
n−1 .

Next, we generalize these results to rLFALP. In fact, we
shall do a bit more, as our analysis will account for the length
of the repair tunnel, which is an important factor in provi-
sioning remote LFA.4

Theorem 5 Let Cn be an odd ring on n nodes with n ≥ 3,
and let 1 ≤ k ≤ n−1

2 denote an upper bound on the length of
the tunnel from the source node to its rLFA. Then, μ(Cn) =
2k
n−1 .

Proof Consider a ring topology on n nodes, n odd, let
(s, d) ∈ E be a neighboring source–destination and suppose
that the link between them went down. In this case s needs to
find a possible remote loop-free alternate since it cannot use
its other neighbor because it will pass back the packet. Thus,
the possible repair tunnel endpoints are situated on the other

4 See the remote-lfa maximum-cost option on [11].

side of the ring with respect to the failed link, i.e., if an arbi-
trary node u ∈ rLFALP(s, d), then dist(s, u) ≤ n−1

2 which is
tight if d ∈ neigh(s). One can observe that if maximal tunnel
length is permitted, i.e., k = n−1

2 , then such kind of repairing

node always exists (μLP(Cn) = n(n−1)
n(n−1) = 1). However, if

the tunnels need to be shorter than an arbitrary node u can
only be an rLFALP is dist(s, u) ≤ n−1

2 − l, where l is the
tunnel shortening coefficient, i.e., the greater the l, the shorter
the tunnel. Trivially, shortening the tunnel with l dissolves
the protection among ∀(s, d) pairs, where dist (s, d) = l.
Therefore, rLFALP failure coverage can be modified as fol-
lows: μLP(Cn) = n(n−1−2l)

n(n−1) . Now, consider dist(s, u) ≤ k,
where k represents the length of the tunnel. In this manner
l = n−1

2 − k meaning that μLP(Cn) = n−1−n+1+2k
n−1 = 2k

n−1 .	


Note that k = 1 means that only neighboring nodes can
be used as repair tunnel endpoints, which essentially corre-
sponds to simple loop-free alternates. In this case, Theorem 5
yields the same result as Proposition 1 stated for LFALP for
odd rings.

Theorem 6 Leg Cn be an even ring on n nodes with n ≥
4, and let 1 ≤ k ≤ n−2

2 denote an upper bound on the
length of the tunnel from the source node to its rLFALP.
Then, μLP(G) = 2k−1

n−1 .

Proof Consider a ring on n nodes, n even, and suppose
that link between an arbitrary neighboring (s, d) source–
destination pair went down. According to the case of odd
ring, s need to pass the packet to the other side of the
ring, however, the possible repair tunnel endpoints cannot
be reached without traversing the failed component. Thus,
for ∀(s, d) pairs, where d ∈ neigh(s) : the link (s, d) can-
not be protected. One can observe, if dist(s, d) ≥ 2, then
tunnels, avoiding the failed link exist. Therefore, for an arbi-
trary source s has remote LFAs to ∀d destination exclud-
ing its neighbors (μLP(Cn) = n(n−3)

n(n−1) ). However, assuming
shorter tunnels results that for possible u ∈ rLFALP(s, d) :
dist(s, u) ≤ n

2 − l, where l is a shortening coefficient as it
was in the case of odd rings. Now, l = n

2 − k meaning that
μLP(Cn) = n−1−n+2k

n−1 = 2k−1
n−1 . 	


As before, supposing k = 1 results the corresponding state-
ment in Proposition 1 for LFALP for even rings. In this
regard, rLFALP can be seen as a natural generalization of
LFALP.

7.1.3 Worst-case scenarios for rLFALP: 2-node-connected
graphs

Below, we continue our analysis towards finding 2-node-
connected graphswith low rLFALP failure coverage. Inwhat
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Fig. 5 Illustration topologies

follows, we suppose that there is no constraint on the length
of the tunnel.

Since the simplest 2-node-connected network with low
failure coverage is a 4-cycle (μLP(C4) = 1

3 ), we exam-
ined graphs that contain a large number of 4-cycles as sub-
graphs.Weconsidered the networks depicted inFig. 5awhere
k denotes the number of 4-cycles, and Fig. 5f where k marks
the number of node pairs. The following theorem concludes
the results:

Theorem 7 For any k > 2 there is a 2-node-connected
graph G on n = 2k nodes with μLP(G) = k−1

2k−1 .

As a proof, we show that grids (Gk) and complete bipartite
graphs (Kk,k) attain this limit. In grids, ∀(s, d) pairs: d ∈
neigh(s) or d ∈ S(s) cannot be protected, where S(s) denotes
the set of nodes situated on the same side. It is easy to see that
every node is in a 4-cycle wherein neighbors as destinations
are not protectable and the shortest paths to every node on
the same side traverse one of the neighbors. Thus, such nodes
are unprotected according to Lemma 1.

Similar is the case for Kk,k as well. Each d ∈ S(s) are
protected while ∀d ′ /∈ S(s) are neighbors of s and, due to the
property of bipartite graphs that every cycle is even, neigh-
bors cannot be protected either.

7.1.4 Worst-case scenarios for rLFALP: 2-edge-connected
graphs

So far, we have seen that in 2-node-connected graphs asmany
as 50% of the node-pairs can go unprotected by rLFA against
single link failures. Below,we show that in slightly less dense
2-edge-connected graphs the situation can be even worse.

Theorem 8 For any k ≥ 1 there is a 2-edge-connected
graph G on n = 3k + 1 nodes with μLP(G) = 1

3 .

As a proof, we show that the so called “4-propeller graph”
(Pk) attains this limit. Thus, consider (Pk) depicted in Fig. 5e
where k denotes the number of blades. One can see that the
nodes on the pitch of the propeller blades have remote LFAs
to every destination except the neighbors, since they are on
an even cycle. Nodes on the side of the blades considered as
sources can only protect adjacent link failures if the nodes
in the face of them are considered as destinations. Finally,
the node in the middle has remote LFAs only for destination
nodes situated on the pitch of the blades. Thus,

μLP(G) = k(3k−2)+2k+k
3k(3k+1) = 3k2+k

3k(3k+1) = k(3k+1)
3k(3k+1) = 1

3 .

7.2 Node protection

Next, we turn to find the graphs with the lowest and highest
rLFANP coverage, as measured by μNP. First, we charac-
terize the good cases and show that, as it was in the link-
protecting case, there exist graphs that can be fully pro-
tected against single node failures. Then, we show that even
μNP(G) = 0 is possible, and this can be attained even in a
not so complicated network topology.

7.2.1 Graph with good coverage

Since node protection is undefined between two arbitrary
neighboringnodes,weneed to analyzeonly those (s, d)pairs,
where dist(s, d) > 1. The following theorem concludes the
results:

Theorem 9 Let G be an undirected, simple graph with uni-
form link costs, and let S2 be a set of 2-neighbors in G:
(u, v) : dist(u, v) = 2. Now, μNP = 1, if and only if for
each (s, d) ∈ S2 there exists n for which

dist(s, n) = dist(n, d) or dist(s, n) + 1 = dist(n, d) .

Proof Consider the (s, d) pair inS2 depicted in Fig. 6, where
dist(s, d) = 2 and the wavy lines denote the existence of
paths among the nodes. In this case, for n to be rLFANP(s, d)

it has to fulfill (3) and (5), namely dist(s, n) < 1+ dist(e, n)

and dist(n, d) < dist(e, n) + 1 ⇒ dist(s, n) = dist(n, d).
On the other hand, consider now that dist(e, n) = k. Then,

123



496 L. Csikor, G. Rétvári

s e d

n

Fig. 6 Illustration for Theorem 9

due to triangle inequality, dist(s, n) and dist(n, d) can only
be 1 ≤ x ≤ k. However, if x = 1, then dist(n, d) can only be
dist(s, n) + 1, since if it does not, then the next-hop of s to
destination d would not be node e. The backward direction of
the proof comes from Lemma 2, as if a next-hop is rLFANP
protected, then every further node, including the next-next-
hop, is protected as well. Therefore, if it is true for each
non-neighboring node pair, then μNP(G) = 1. 	


There is a bunch of networks for which the statement of
Theorem 9 applies. For instance, odd and even rings, infinite
grids, and “Möbius ladder” topologies all qualify.

7.2.2 Worst-case graphs for rLFANP

Next, we turn to discuss which networks are the most incon-
venient for rLFANP. Note that there are certain graphs for
which studying μNP does not make sense, as it happens
to be undefined. Such is the case, for instance, of complete
graphs with unit link costs: here, every node-pair is adjacent
and hence rLFANP is not defined due to the last-hop prob-
lem. In our analysis, therefore, we only considered graphs in
which at least one non-adjacent node pair exists (i.e., non-
complete graphs). Even in these graphs the question is only
interesting when single node failures, at least theoretically,
can be repaired, so we shall focus only on 2-node-connected
graphs.

Theorem 10 For any n > 4, there is a 2-node-connected
graph G on n nodes with μNP(G) = 2(n−3)

n2−5n+6
.

Again, as a proof we show a particular graph on n nodes,
hereafter denoted by Ln , that attains this limit. An example
for Ln for the case when n = 6 is depicted in Fig. 7. The

a

b

c

d

e

f

Fig. 7 Worst-case graph for rLFANP on n = 6 nodes

main topological characteristic of Ln is that there is one node
on the top with degree of n − 1, there are two nodes with
degree of 2, while the remaining n − 3 nodes have a degree
of 3. Correspondingly, the number of non-adjacent source–
destination pairs is 2(n−3)+ (n−3)(n−4) = n2 −5n+6.
For each non-neighboring node pair (s, d) : dist(s, d) = 2
via the node on the top. One easily sees, in addition, that
only those node pairs can be protected that have ECMPs
to each other, that is, which are in opposite in the 4-cycles.
The number of such node pairs equals twice the number of 4-
cycles in the graph (i.e., n−3), and therefore there are 2(n−3)
protected node pairs. Consequently, we have μNP(Ln) =
2(n−3)

n2−5n+6
. Observe that, in the limit, this bound tends to zero,

meaning that in very large Ln graphs the fraction of rLFA
node-protected source–destination pairs diminishes.

So far,wehave sought a tight characterization for the lower
bound onμLP andμNP for any unweighted graph G. At the
moment, we do not have clear answers to this intriguing but
hard graph-theoretical problem. What we could prove, how-
ever, is that in certain 2-node-connected unweighted graphs
μLP(G) can be as low as 1

2 , and in 2-edge-connected graphs
an even lower threshold of 1

3 is also realizable. So far, we
have not been able to identify any 2-node-connected or 2-
edge-connected graph with smaller rLFALP coverage. Thus,
we conjecture that k−1

2k−1 is an actual lower bound onμLP(G)

for 2-node-connected graphs, while 1
3 is a lower bound on

μLP(G) for 2-edge-connected graphs. In the case of node
protection,we have stronger results: we could show that there
exist certain large graphs with μNP → 0, which, evidently,
is a lower bound, at least in the limit. Regarding graphs of
practical size, however, we do not have better lower bound
at the moment than the one for Ln graphs.

7.2.3 Computational study

It turned out that finding a universal lower bound on rLFALP
or rLFANP coverage is a hard problem. Clearly, a computa-
tional approach might be instructive to support or refute our
conjectures. Hence, we generated all non-isomorphic net-
works on n nodes where n ∈ {1, 2, . . . , 9}. Note that the gen-
eration is very time consuming even if only non-isomorphic
graphs are created. Table 1 summarizes the lower bounds
with the following notations: n denotes the number of nodes,
μ2e
LP and μ2n

LP notes the failure coverage against single link
failures in case of 2-edge-connected and 2-node-connected
networks, while μNP denotes the failure coverage against
single node failures in non-complete 2-node-connected net-
works. The columns marked by Bl denote the conjectural
lower bounds.

In the case of link protection, it can be seen that until
n ≤ 4 results are the same, and if n ≥ 5 coverages start
to increase. One can observe that in the case of n = 7 the
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Table 1 Lower bounds measured by μLP and μNP in worst-case
graphs on n nodes

n μ2e
LP Bl μ2n

LP Bl μNP Bl

3 1 1 1 1 Undefined Undefined

4 1
3

1
3

1
3

1
3 1 1

5 2
5

2
5

2
3

2
3

6 2
5

2
5

2
5

1
2

1
2

7 1
3

1
3

3
7

2
5

2
5

8 19
56

3
7

3
7

1
3

1
3

9 1
3

31
72

2
7

2
7

given failure coverage equals to the coverage attained by 4-
propeller graphs mentioned above. It also shows that lower
bounds of 2-edge-connected networks are the lowest.

The case of node protection turns out different. If n = 4
the coverage is 1, while if n > 4 the coverages start to
decrease. The most important observation is that the con-
jectured lower bounds are tight for every 2-node-connected
network until n = 9 nodes suggesting that the result of The-
orem 10 hold true as the attainable lower bound on μNP in
2-node-connected networks.

8 Remote LFA graph extension

As observed, there exist a lot of graphs with small failure
coverage, measured in terms of μLP and μNP. Hence, in
this section we ask to what extent we need to intervene at
the graph topology to improve coverage to 100% in both
link and node-protecting cases. This problem is important
since (i) this would answer how “far” are poorly protected
networks from perfect rLFA failure coverage and (ii) would
provide an easy way for operators to boost the protection in
their networks. We adapt the formal description of the LFA
graph extension problem from [41] to link-protecting rLFA
as follows:

Definition 1 Link-protecting rLFA graph extension prob-
lem:Given a graphG(V, E), find the smallest subset F of the
complement edge set E ofG such thatμLP(G(V, E∪F)=1.

Similarly, in the case of node protection this definition can
be formalized as follows:

Definition 2 Node-protecting rLFA graph extension prob-
lem:Given a graphG(V, E), find the smallest subset F of the
complement edge set E ofG such thatμNP(G(V, E∪F)=1.

At the moment, we do not know the complexity of this
problembut, basedonour former experiencewith similar net-
work optimization problems for LFA, it seems highly proba-
ble that it is alsoNP-complete. To actually solve the problem,

we adopted the greedy graph extension algorithm from [41],
which, at least for LFA, performed almost the same as the
optimal algorithm, but it is much faster and simpler. Here, we
extend this algorithm to the case of rLFA, both for the link-
protecting and the node-protecting cases. Moreover, we also
developed a simulated annealing-based heuristics as another
approach to complement our studies in increasing the rLFA
failure coverage in different kinds of networks.

First, we show the greedy graph extension method. This
algorithm adds the best edge from the complement edge set
that improves the coverage at most. Formally, the algorithm
is defined as follows:

Algorithm 1 Greedy rLFA graph extension for graph
G(V, E)

1: while μ(G(V, E)) < 1
2: (u, v) ← argmax(i, j)∈E μ(G(V, E ∪ {(i, j)}))
3: E ← E ∪ {(i, j)}
4: end while

Note that the pseudo-code works the same for the link-
protecting and the node-protecting case. The variant for the
link-protecting case is called the greedy link-protecting rLFA
graph extension algorithm, while the one optimizing for
node-protection is called the greedy node-protecting rLFA
graph extension algorithm. The following theorems charac-
terize the terminating conditions of these algorithms.

Theorem 11 Let G(V, E) be a graph with unit link costs.
Then, the greedy link-protecting rLFA graph extension algo-
rithm terminates with full link-protecting rLFA coverage
regardless of the input graph.

Proof Algorithm 1 surely terminates when all complement
links are added, but at this point μLP(G) = 1 as complete
graphs have full link-protecting rLFA coverage. 	

Theorem 12 Let G(V, E) be a graph with unit link costs
and suppose that G(V, E) is not a complete graph. Then,
the greedy node-protecting rLFA graph extension algorithm
terminates with full node-protecting rLFA coverage regard-
less of the input graph.

Proof We cannot use the same approach directly as above,
because with all the complement edges added we again reach
a complete graph but for this graphμNP is not defined (recall
the discussion in Sect. 7.2). We observe, however, that if we
add all the complement edges except one, then we get an
almost complete graph in which node protection is defined
between one and only one node pair. As this node pair is
trivially protected against a single node failure (since the
nodes in the pair are not neighbors and they are situated in a
4-cycle), thereforeμNP = 1 for this graph. As the algorithm
is guaranteed to converge to this graph, unless the input is a
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complete graph or the algorithm terminates previously, the
proof is complete. 	


Next, we turn to the other algorithm. We chose the sim-
ulated annealing probabilistic metaheuristic as the main
framework, and within this framework we obtained differ-
ent heuristics by different objective functions. Basically, the
algorithm works as follows: given an input graph G(V, E),
we try to augment the graph with a randomly chosen edge
(i, j) from the complement edge set E . If the failure coverage
was improved, thenweunconditionally accept this edge.Oth-
erwise, if the coverage is worse, then the edge could still be
accepted with a certain probability, depending on the actual
objective function and a system parameter called the tem-
perature, which was initially set to relatively high value and
is decreased in every iteration. This ensures the system to
escape easily from local optima in the beginning, and even-
tually get stuck in a goodquality optimum.Theprocess termi-
nates at that time when temperature is dropped to 0 or failure
coverage reached 1. We also used tabu lists to preclude the
iteration from oscillating between two or more already tested
new edge.

Algorithm 2 Simulated Annealing based rLFA graph exten-
sion for graph G(V, E)

1: T ← T0
2: while μ(G(V, E)) < 1
3: choose_random_edge((i, j) ∈ E)

4: if accept_edge(�μ, T ) then
5: E ← E ∪ {(i, j)}
6: end if
7: T ← T − 1
8: end while

The pseudo-code for the simulated annealing based
heuristic is given in Algorithm 2. Note again, that it works
similarly for the link-protecting and node-protecting case.
The pseudo-code uses two procedures, specified as follows:

– choose_random_edge(i, j) selects randomly an edge
(i, j) ∈ E to be added to the network.

– accept_edge(�μ, T ): after adding a randomly selected
new edge to the network, the new failure coverage
μ(G(V, E∪(i, j))) is examined. If it was improved, then
the new edge is added irrevocably to the network. Other-
wise, two different objective functions (�D) are evalu-
ated in order to check how bad the new solution is. One
of them only checks how the failure coverage declined,
formally �D = μ(G(V, E)) − μ(G(V, E ∪ (i, j))).
Besides, the other objective function takes into account
the number of newly added links as well in order to try to
keep it low, formally: �D = �N P − 2m, where N P is
the number of protected source–destination pairs and m

is the number of all the edges including the newly added
one as well. These objective functions are tested via the
so called metropolis test. Metropolis test is used in sim-
ulated annealing heuristics to accept “bad” solutions if it

suits for a criterion, namely e(
−�D
T )

> R(0, 1), where
�D is the change of the objective function, T is the actual
temperature of the system, and R(0, 1) is a random num-
ber in the interval [0, 1]. According to the output of this
test, the newly added edge is left in the network per-
manently or promptly removed. One can observe that
the two different objective functions result two differ-
ent kind of heuristics. Therefore, let SAco be the simu-
lated annealingwith the former objective function, and let
SAcne be the simulated annealingwith the latter objective
function.

8.1 Numerical evaluations

In this section, we examine how many links one must
add in realistic graphs to achieve full rLFA coverage, both
against single link- and node-failures. We chose existing
real-world topologies inferred from the Rocketfuel [32] data
set, the SNDLib [44] graph library, and the Topology Zoo
project [27]. In all topologies, we set link costs uniformly to
1. Note that there are networks in the data set where inferred
link costs were exactly unit costs.

We executed the greedy algorithm as well as the simu-
lated annealing based heuristics. From the latter we executed
20,000 rounds, with initial temperature T0 = 150 and tabu
list size of 20. The detailed results of the link-protecting case
are in Table 2 with the following notations: n is the number
of nodes andm is the number of links inG(V, E); ηLP is the
initial link-protecting LFA coverage; μLP is the initial link-
protecting rLFA coverage; Grη denotes the number of new
links added by the LFA greedy graph extension algorithm to
reach 100% link-protecting LFA coverage, while Grμ gives
the same result for remote LFA. SA�μ denotes the number of
new links added by SAco, and last but not least, SAγ marks
the number of new links added by SAcne.

The first observation is that there were five networks that
were fully protected with rLFA right away, even without the
need of any graph extension. Second, the number of links
that have to be added to reach full coverage with rLFA is
much less than when only simple link-protecting LFA capa-
ble routers are present, irrespectively of which graph exten-
sion method was used. Nevertheless, on average the number
of links added by the different simulated annealing based
heuristics is greater than in the case of the greedy algorithm.
This suggests that for the graph extension problem the greedy
approach is the most plausible solution and, if we can draw
conclusions from the case of pure LFA in [41], it probably
performs very close to the optimal solution too. The largest
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Table 2 Remote LFA graph extension results for link protection

Topology n m ηLP Grη μLP Grμ SA�μ SAγ

AS1221 7 9 0.833 1 0.833 1 1 1

AS1239 30 69 0.898 6 1 0 0 0

AS1755 18 33 0.889 4 1 0 0 0

AS3257 27 64 0.946 3 0.954 1 1 1

AS3967 21 36 0.864 7 0.969 1 1 1

AS6461 17 37 0.919 2 1 0 0 0

Abilene 12 15 0.56 6 0.833 1 1 1

Arnes 41 57 0.595 18 0.731 6 9 12

AT&T 22 38 0.823 6 0.8875 2 2 2

Deltacom 113 161 0.542 79 0.885 4 7 11

Gambia 28 28 0.037 16 0.111 8 12 13

Geant 37 55 0.646 20 0.827 4 5 5

Germ_50 50 88 0.801 22 1 0 0 0

Germany 27 32 0.695 1 0.882 1 1 1

InternetMCI 19 33 0.877 3 0.888 2 2 2

Italy 33 56 0.784 12 0.951 2 2 2

NSF 26 43 0.86 9 1 0 0 0

Table 3 Remote LFA graph extension results for node protection

Topology n m ηNP Gr μN P Gr SA�μ SAγ μe
NP Greμ SAe

�μ SAe
γ

AS1221 7 9 0.083 3 0.083 1 1 1 0.083 1 1 1

AS1239 30 69 0.658 16 0.843 1 1 1 0.928 1 1 1

AS1755 18 33 0.704 7 0.912 1 1 1 1 0 0 0

AS3257 27 64 0.521 20 0.702 5 8 8 0.866 3 3 3

AS3967 21 36 0.715 10 0.896 2 2 2 0.994 1 1 1

AS6461 17 37 0.505 8 0.596 3 3 3 0.747 2 2 2

Abilene 12 15 0.608 3 0.725 2 2 2 0.872 1 1 1

Arnes 41 57 0.331 35 0.426 12 24 20 0.45 12 16 15

AT&T 22 38 0.565 12 0.684 4 4 4 0.849 2 2 2

Deltacom 113 161 0.436 113 0.818 9 25 27 0.868 9 22 23

Gambia 28 28 0.04 23 0.12 14 17 22 0.12 13 19 18

Geant 37 55 0.411 30 0.676 5 11 11 0.74 5 8 8

Germ_50 50 88 0.676 37 0.977 1 1 1 0.998 1 1 1

Germany 27 32 0.599 8 0.77 2 2 2 0.955 2 2 2

InternetMCI 19 33 0.558 9 0.837 3 2 2 0.916 1 1 1

Italy 33 56 0.574 24 0.839 3 3 3 0.926 2 2 2

NSF 26 43 0.634 16 0.963 1 1 1 1 0 0 0

improvement in rLFA coverage, compared to simple LFA, is
seen in networks where initially η(G) < 0.9 (see, e.g., in the
Geant topology). In the Deltacom topology, the installation
of 79 new links was necessary to achieve full LFA cover-
age, while with only 4 additional links full rLFA coverage is
attainable. The results indicate that (i) more than 50% of the
networks lend themselves to rLFA extension since the max-
imum number of links needed is less than 2; (ii) on average

3.6 new links are necessary to attain 100% rLFA coverage
while in case of simple LFA this number is 14.5.

In the second run, we examined how the proposed algo-
rithms could improve the failure coverage against single node
failures. Since the extended rLFA variant can play an impor-
tant role in the case of node protection, even if the link costs
are uniform, we evaluated that possibility as well. Table 3
contains the results, where again n is the number of nodes

123



500 L. Csikor, G. Rétvári

and m is the number of links in G(V, E); ηNP is the ini-
tial node-protecting LFA coverage; μNP is the initial node-
protecting rLFA coverage, while μe

N P is the initial node-
protecting rLFA coverage with the extended rLFA option.
Grη denotes the number of new links added by the LFA
greedy graph extension algorithm. Grμ marks the number of
new links added by the rLFA greedy graph extension algo-
rithm, while in the case of Greμ the extended P-space option
was also considered. The results in column SA�μ and SAγ

are similar to the link-protecting case, while columns SAe
�μ

and SAe
γ indicates the number of links added by the two sim-

ulated annealing based heuristics, under the assumptions that
routers were able to use their extended P-space.

The first observation is that, if simple rLFA is consid-
ered then there is no network, which is initially fully rLFA
protected against node failures. However, if the routers are
able to use their extended P-space, then there were 3 net-
works with full protection out of the box. As it was in the
link-protecting case, much less additional edges are needed
for 100% node-protecting rLFA failure coverage than when
only simple node-protecting LFAs are only available. For
instance, in Deltacom topology, 113 new edges were nec-
essary to protect all source–destination pairs with pure LFA
against single node failures, while this number is only 9when
remote LFAs can be used as well. One also can observe that
the greedy approach yielded the best solutions, i.e., it needed
the fewest additional edges in order to provide full protection.
Namely, in the case of simple rLFA, on average it installs
4.05 new links to the network, while simulated annealing
based algorithms could not reach full protection with less
than 6.35 new links. Nevertheless, if extended P-space is an
option, then greedy algorithm needed on average 3.3 new
links, whilst the other two heuristics resulted more than 4.75
new links.

Overall, the results suggest that network operators might
hugely benefit from deploying rLFA in their routers, since
it can definitely protect much more source–destination pairs
than pure LFA ever could do. Moreover, the provisioning
of a very few number of additional new links can boost the
protection provided by rLFA up to 100%. In particular, we
found that more than 50% of the networks needed less than
4 additional links for perfect rLFA failure case coverage.

9 Conclusions

Currently, loop-free alternates is the best choice for providing
fast protection in pure IP and MPLS/LDP networks, as it is
readily implemented in basically all commercial IP router
offerings. It is a well-known fact that LFA cannot protect
every single failure. In our previous works, we showed that
improvements can be made by altering the existing network

topology. If modifying the network is not an option, remote
LFAs may be a better approach.

As in the case of LFA, the number of failure cases pro-
tected by rLFA crucially depends on both the graph topology
and the link costs. As it seems difficult to consider both at the
same time, we studied graph topological concerns separately
from the effect of link costs in this paper. This restriction is
plausible as a first approach, and we definitely plan to gen-
eralize our results to weighted graphs in a subsequent work.

For the first time in the literature, we analyzed rLFA fail-
ure coverage in general networks by a new set of elemen-
tal graph theoretical rLFA tools. Moreover, we extended the
basic specification of rLFA [7], originally defined for single
link failures only, to the relevant case of single node failures,
andwe alsomade a deep analysis to this casewith our toolset.

We showed that, under theunit-cost assumption, “extended
P-space” results full rLFA failure coverage in every network
against single link failures. This can be an important pointer
for operators, currently in the position to deploy rLFA, on
how to actually choose link costs. Unfortunately, it turned out
that in the case of node protection this option is not enough
to protect all source–destination pairs.

We gave sufficient and necessary conditions for a unit cost
graph to be 100% protectable with rLFA against both link
and node failures. Then, we studied general lower and upper
bounds for rLFA coverage. For upper bounds, we showed
that in both link- and node-proteting cases, full rLFA cov-
erage can be attained. For lower bounds, in the case of link
protection, we found that for 2-node-connected graphs on
2k nodes the value k−1

2k−1 is realizable by grids and complete
bipartite graphs and we confirmed computationally that this
is a valid lower bound as long as the number of nodes n is
smaller than 10. We also found that for 2-edge-connected
graphs, this “conjectured” lower bound is 1

3 . We also found
that for node failures rLFA coverage can, somewhat unex-
pectedly, straight out drop to zero in certain cases.

We defined the rLFA graph extension problem as the task
to augment an unweighted graph with the fewest new links
to obtain 100% failure case coverage. Along a simple greedy
algorithmwe also developed a family of simulated annealing
based heuristics to solve this problem approximately. We
found that, as it was in the case for pure LFA [41], the greedy
method is the most plausible algorithm. It turned out that,
even in very big real-world ISP topologies, adding only 2–3
new links is enough to attain 100% failure coverage against
link failures, whilst the number of new links needed for full
protection against node failures is only slightly more, 3–4.

In the future, we plan to study further remote LFA
related network optimization questions. For instance, in
the unweighted case improving rLFA coverage is possi-
ble with modifying link costs as well, which looks another
intriguing, and practically relevant, network optimization
problem.
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