
Privacy of DNS-over-HTTPS: Requiem for a Dream?

Levente Csikor
National University of Singapore

Himanshu Singh†
IIIT, Naya Raipur

Min Suk Kang
KAIST

Dinil Mon Divakaran
Trustwave

Abstract—The recently proposed DNS-over-HTTPS (DoH)
protocol is becoming increasingly popular in addressing
the privacy concerns of exchanging plain-text DNS mes-
sages over potentially malicious transit networks (e.g., mass
surveillance at ISPs). By employing HTTPS to encrypt DNS
communications, DoH traffic inherently becomes indistin-
guishable from regular encrypted Web traffic, rendering
active disruption (e.g., downgrading to the plain-text DNS)
by transit networks extremely hard. In this work, we in-
vestigate whether DoH traffic is indeed indistinguishable
from encrypted Web traffic. To this end, we collect several
DoH traffic traces corresponding to 25 resolvers (including
major ones, e.g., Google and Cloudflare) by visiting thou-
sands of domains in Alexa’s list of top-ranked websites at
different geographical locations and environments. Based on
the collected traffic, we train a machine learning model
to classify HTTPS traffic as either Web or DoH. With
our DoH identification model in place, we show that an
authoritarian ISP can identify ∼97.4% (∼90%) of the DoH
packets correctly in a closed-world (open-world) setting while
only misclassifying 1 in 10, 000 Web packets. To counter this
DoH identification model, we propose an effective mitigation
technique, making the identification model impractical for
ISPs to filter and consequently downgrade DoH to plain-text
DNS communications.

Index Terms—DoH, DNS, privacy, machine learning

1. Introduction

Since its inception, the Domain Name System
(DNS [52]) has been a plain-text protocol for all practical
purposes. As almost every communication is preceded by
a domain name resolution, adversaries (e.g., ISPs, censors,
authoritarian governments [6]) having access to plain-text
DNS (Do53) traffic can easily track user activities [10],
[27], [35], [46], tamper with the data [6], [14], or even
block connection attempts as witnessed recently [7], [34].

Of the several privacy and confidentiality enhancing
proposals in the past (§2.1), DoT (DNS-over-TLS) [39]
and DoH (DNS-over-HTTPS) [37] have been receiving
particular attention. Both encrypt DNS communications
between the stub resolver and the recursive DNS server,
thereby mitigating any eavesdropping attack on DNS,
while also providing integrity against data tampering. DoT
uses a unique TCP port 853 (not used by any other well-
known application), to send DNS data over TLS. On the
other hand, DoH uses port 443 and, particularly, secure
HTTPS to encrypt DNS communication; in other words, it

†Himanshu Singh was an intern at the National University of Singapore
during this work.

Figure 1: Plain-text Do53 can always be monitored. Due
to encryption, DoT cannot be eavesdropped, but can be
filtered via port 853. DoH blends into the HTTPS traffic;
therefore, it is non-trivial to identify and filter it.

uses the same protocol as encrypted Web traffic. While it
is easy to block or apply traffic analysis [38], [65] on DoT
communication using port-based filtering, it is impractical
to do the same for DoH traffic by filtering on the port num-
ber, as it would also block normal Web communications of
users. Successful blocking of these new protocols would
force the users to fall back to plain-text DNS (Do53),
thereby letting adversaries to carry out the traditional
filtering mechanisms. DoH has an advantage over DoT,
as it cannot be blocked using simple rules. Beyond port-
based filtering, one could imagine constructing rules using
information such as IP addresses of end-points and plain-
text domain information in TLS handshakes, i.e., Service
Name Indication (SNI); however, as we explain in §2, they
are not only fundamentally limited for this purpose, but
there are also ongoing efforts to defeat the use of such
information for identification purposes, e.g., [25].

By using HTTPS, DoH packets inherently blend with
encrypted Web packets on the wire. Since Web traffic
is the most commonly used protocol on the Internet
today [53], not being able to distinguish DoH traffic
from encrypted Web traffic — we define this as the
indistinguishabilty property — will make it harder for an
authoritarian regime to block DoH traffic. We therefore
envision that DoH traffic becomes indistinguishable from
encrypted Web traffic, thereby defeating any attempts to
thwart the adoption of DoH by users.

In this work, we investigate whether DoH traffic is in-
deed indistinguishable from encrypted Web traffic. While
in [69], there has been an attempt to distinguish DoH
flows from Web flows, to the best of our knowledge,
our work is not only the first comprehensive study on
this important indistinguishability property, but is also
the one to classify on a per-packet basis. Our approach
enables to react, i.e., block or drop corresponding flows
or packets, in near real time as well as facilitates different
traffic analysis attacks such as domain fingerprinting [65].
We take the first steps in developing a machine learning
model for identifying and differentiating DoH traffic from

encrypted Web traffic. To this end, we make our first main
contribution: we develop an automated Docker container
to collect several DoH traffic traces that capture the DNS
communications made with 25 DoH servers, including
the most prominent ones, i.e., Google, Cloudflare, Quad9,
and CleanBrowsing (§4.1). As client, we employ Mozilla
Firefox browser that supports DoH since the beginning
[64]. We automate the process of visiting the first 20,000
domains of Alexa’s top one million websites at different
times of the day and at different geographical locations
with multiple environments (e.g., x86, arm64).

Based on these traces, we make our second main con-
tribution: we train (§4.3) and build a supervised machine
learning model (§4.4) to classify HTTPS traffic into (en-
crypted) Web and DoH traffic. To achieve this, we use only
a small number of visible properties of the encrypted traf-
fic as features, and exclude any prior knowledge such as IP
addresses of the DoH servers (e.g., 104.16.248.249
for Cloudflare), SNI (Server Name Indication) in the TLS
handshake (e.g., mozilla.cloudflare-dns.com),
etc. Our model correctly identifies ∼97.4% (∼90%) of
the DoH traffic in the closed-world (open-world) settings
while only misclassifying 1 in 10, 000 Web packets (§5).
Essentially this means, network adversaries can deploy
our identification model to detect and block DoH traffic
with negligible effect on Web traffic due to the low false-
positive rate (FPR).

We go further, and as our third main contribution,
we develop and study multiple techniques to counter
the proposed identification model (§6). Particularly, we
show that the suggested padding technique (e.g., RFC
8467 [51]) does not help in blending DoH traffic more
with the Web traffic. Thus, we study a new set of padding
techniques on DoH packets (§6.2) that effectively and
significantly brings down the classification accuracy of
the identification model impacting its practical use for
adversarial filtering. In particular, even at an unaccept-
able high FPR of 10−3, the model can correctly classify
only 83% and 0% of the DoH packets in a closed- and
open-world setting, respectively. At lower FPR of 10−4

(required for practical deployment), the model’s detection
capability further deteriorates in the closed-world setting
to ∼53% (§6.3). Our anti-identification technique is easily
deployable at a user’s end-system to beat a network adver-
sary’s DoH identification model, rendering it impractical
for filtering (§7).

2. Background and Related Works

In this section, we give a brief overview on the evo-
lution of privacy and security measures for DNS commu-
nications. We discuss whether encrypted DNS can indeed
provide full privacy one might desire. Subsequently, we
give an overview of the related works.

2.1. Encrypted DNS and its Penetration

Since the inception of DNS, the lack of integrity of
Do53 has allowed manipulation attempts, e.g., altering
the DNS resolution for services such as online banking,
shopping, and social media, or redirecting visitors to
phishing websites. DNSSEC [71] enables an authoritative
name server being responsible for a particular domain to

cryptographically sign DNS responses, thereby providing
integrity to DNS; but it does not provide privacy guaran-
tees. DNSCrypt [23] aimed at encrypting and authenticat-
ing the DNS channel using elliptic-curve cryptography.
However, as its specification has not been submitted to
the IETF yet [24], it has neither become standardized nor
ubiquitous.

In 2015, the IETF defined DNS-over-TLS (DoT, [39])
to encrypt DNS communications in a standardized way.
However, since it uses a designated port number (853),
ISPs can easily identify DoT traffic (to a remote resolver),
and subsequently filter it out. Via such disruptions, ISPs
can force the requester to downgrade to Do53, and this
may happen seamlessly according to the opportunistic
privacy profiles [22] that most stub resolvers adapt [40].

In 2017, DNS-over-HTTPS (DoH, [37]) was defined
by the IETF, which uses the same level of encryp-
tion and the well-known destination port number 443
used for encrypted Web communications. Thus, besides
being uninterpretable by an eavesdropper, DNS queries
(and responses) over HTTPS can easily bypass firewalls
(cf. Fig. 1). Put it differently, a firewall cannot differentiate
between DoH and Web packets using the same service
port. We explain in §2.2, why other fields (e.g., IP address)
and existing techniques fall short in achieving this.

Note that these privacy-enhancing encrypted DNS
techniques are only used between stub resolvers and
recursive resolvers. While this potentially protects the
client’s DNS queries and responses from an adversary,
DNS information may be exposed in the latter stages of the
DNS resolution, when the recursive resolver does not have
the answers cached. The exact source of the query already
becomes obfuscated, though, even in case of EDNS Client
Subnet (EDNS CS, [16]). That part of the communication
is completely out of scope of DoH (and DoT) in general,
and thus also of our work. Interested readers can refer
to the IETF DNS PRIVate Exchange (DPRIVE) working
group’s Draft [48] for more details.
Penetration. DoH, being based on HTTPS, was first
deployed (as a client) as part of Mozilla’s Firefox
browser [12], thereby having no requirement from the
underlying operating system for encrypted DNS commu-
nications. The first big leap since then has been made
by Mozilla (in 2018) by introducing a fully functional
support for Trusted Recursive Resolvers (TRR) in its
browser, Firefox [50]. Google made similar changes to its
Chrome browser in 2019 [11]. Moreover, in 2020, Mozilla
announced that it will use DoH, particularly, Cloudflare’s
TRR, as default for US users (though users can change
these settings). Similar attempts raised concerns for ISPs
(especially in the UK [43]) as almost all of their services
will eventually break if DoH is in use and it relies on
a third-party resolver. As a consequence of nominating
Mozilla as the “Internet villain of the year”, Mozilla did
not enable DoH by default for UK citizens [43].

This, however, did not impose a barrier on the adoption
of DoH, which, though still in its infancy, continues to
gradually become popular. For instance, Microsoft re-
cently announced addition of OS-level DoH support for
Windows 10 Insiders [28], [54]. Besides, DoH is not only
supported natively in iOS and macOS platforms [58], but
they also provide APIs to customize DoH (and DoT) usage
in any application, e.g., to connect to a DoH service if

using a WiFi router [57]. Similar applications are also
available for Android [33], [47]. Furthermore, recently,
Comcast joined Cloudflare and NextDNS in the TRR pro-
gram of Mozilla as the first ISP providing DoH services
through the browser [15].

2.2. ISP’s Surveillance Techniques beyond DNS

ISPs and authoritarian governments often deploy mon-
itoring and filtering services based on passive Do53 data.
For instance, DNS-based blocking is applied in Switzer-
land to ban online foreign gambling, in China to put
a barrier on political speech [60], and also occasion-
ally in several countries during political turmoils [6].
Even though IP addresses of end-points (§2.2.3), pure
(unencrypted) HTTP traffic (§2.2.1), deeper analysis on
HTTPS traffic [61], [72], or plain-text domain information
of TLS (§2.2.2) of a packet may also reveal sensitive
information, still, the main reason behind the success
of DNS-based monitoring, is its inherent simplicity and
easy-to-track nature. First, even if the services and their
contents can be geographically distributed (i.e., can be
accessed at multiple IP addresses), can be completely
relocated (i.e., assigned new IP address), or can share
the resources (i.e., multiple services behind the same IP
address), their domain names change only infrequently.
Second, even if we become aware of the IP address of a
service, accessing its particular content (e.g., the web site
itself) for censoring purposes is not straightforward. For
instance, consider example.com, which, when typed
into the browser’s URL field, gives the usual content,
however, trying to use its IP address as a URL instead,
i.e., http://93.184.216.34 (at the time of writing),
results in Error 404. The reason is that the URL itself
conveys necessary information for the service to indicate
how and which content should be served. Moreover, when
it comes to HTTPS services (which dominate the Internet,
cf. §2.2.1), without a proper URL, we cannot indicate
the servers for which service they have to prepare the
certificate first (see more details in §2.2.2).

Consequently, if an ISP loses the sight of the DNS
data, all monitoring and filtering services become affected.
Next, we briefly overview what other (meta-)data one may
consider for trying to filter a specific service when the
DNS communication is encrypted.

2.2.1. Non-encrypted Subsequent Flow. After encrypted
DNS communication, if the subsequent flow (sent from
the user towards the requested service) is using a non-
encrypted channel, i.e., connects to a HTTP website, then
by observing the HTTP header, the corresponding traffic
can be easily filtered. But, web traffic is increasingly
becoming encrypted, with recent reports estimating ∼94%
of web traffic as already encrypted [30].

2.2.2. Server Name Indication. Every website relying on
HTTPS requires TLS certificate that facilitates encrypted
communication via PKI (Public Key Infrastructure) as
well as provides identity assurance of the certificate’s
holder. When establishing a secure connection to a ser-
vice, first the corresponding certificate has to be ob-
tained. This is expressed by the Server Name Indication
(SNI) field in the first TLS packet, in particular, the

Client Hello message. Since the TLS header is not
encrypted, the SNI information is visible to any eaves-
dropper and it contains a unique ID of the service (e.g.,
www.ieee-security.org) making it easy to filter.
However, in TLS 1.3, for this specific reason, Encrypted
Client Hello (ECH [25], formerly known as encrypted
SNI, eSNI [26]) has been introduced by the IETF, which
can make pure SNI-based filtering infeasible. However,
since ECH requires public keys to be distributed through
DNS TXT records (_esni.domain name), using ECH
for connecting to a DoH service in the first place would
create a pragmatic loop. In this case, therefore, relying
on ECH is either neglected (e.g., even if it is enabled
in Firefox, it is not used to connect to Cloudflare’s DoH
resolver, however Cloudflare supports ECH), or done via
other channels (e.g., Do53), which can eventually be
monitored. Note, by design, if no keys could be obtained
for ECH, browsers fall back to the plain SNI trans-
parently. Nevertheless, mere SNI-based filtering of DoH
services is yet impractical as any (rogue) DoH service
can be created and put behind an obfuscated SNI that
does not reveal the existence of a DoH resolver, e.g.,
www.exampleconf.com/submit.

2.2.3. IP address. Recent studies [36], [56] have shown
that if an adversary has a plausible set of sites and the
corresponding IP addresses a user might visit, then the
privacy of encrypted DNS/SNI (i.e., DoH and eSNI) is
limited. However, not only the set has to be huge, but mak-
ing it up-to-date is a daunting task. Besides, as mentioned
in §2.2, due to resource sharing, services can have the
same public IP address. For instance, consider the DoH re-
solvers ContainerPI, LibreDNS, hostux, Tiarap,
etc., they all run their Web and DoH services behind the
same IP addresses. More importantly, we found that DoH
queries sent to most of the Cloudflare IP addresses within
the range 104.16.0.0/16 are successfully resolved
(cf. A.12 in Appendix). Clearly, blocking the whole IP
range would make many of today’s web services inac-
cessible as Cloudflare is one of the market dominators in
cloud-based CDN (Content-Delivery Networks), hosting,
load-balancing, DNS services, and cyber-security frame-
works (e.g., DDoS protection). Therefore, an ISP cannot
simply make critical decisions merely by looking at the
destination IP addresses of the packets.

2.2.4. JA3(S) TLS Fingerprinting. Developers at
Salesforce Engineering open-sourced JA3 [5], a TLS
client/server fingerprinting method, originally designed for
malware detection. JA3 hash represents the fingerprint of a
TLS application and it is shown that many clients/servers
can be correctly identified via this method, e.g., the ToR
client and server, trickbot malware [4].

While JA3 is useful to maintain a fingerprint database
of clients in a controlled environment, for identifying
individual Web or DoH services in the wild, yet it is in-
complete. First, multiple physical and/or virtual instances
of the same service may run behind the same public IP
address (cf. §2.2.3). However, for the different configu-
rations of the underlying systems, a Web/DoH service
can produce multiple JA3S hashes [45] depending on
which physical/virtual server our request was directed
to by a load-balancer. In particular, since Firefox, when

configured to use Cloudflare’s DoH resolver (by explicitly
defining its IP address), establishes multiple parallel con-
nections in the background, we observed multiple different
hashes for different Server hellos right away1.

On the other hand, due to the same reason, there is
a high chance that different services can have the same
JA3S hash. Particularly, we find that the DoH resolver
at Cloudflare (more precisely, one instance located be-
hind the IP address 104.16.248.249) has the same
JA3S fingerprint as two completely different services
within Google’s network (a service behind IP addresses
172.217.194.103 and 74.125.200.95).

We conclude that while other (meta-)data might give
some insight into what services a customer wants to
visit, unsurprisingly none of them would be able to easily
substitute the DNS-based monitoring and content filtering.

2.3. Related Works

Website fingerprinting techniques have been shown
to be successful in revealing information from encrypted
HTTPS web communication [32], [55], [66], [70]. On the
other hand, adversarial learning techniques against finger-
printing methods have been studied recently. In particular,
it has been shown that ML models are vulnerable to adver-
sarial examples [2], which are carefully crafted samples
mixed into the dataset leading to misclassification. For
instance, in [1] dummy packets are injected into Tor user
traces to break patterns.

A recent work [38] analyzed DoT traffic for website
fingerprinting. In particular, a DoT fingerprinting method
was proposed to understand how much information can
be deduced through traffic analysis on DoT packets.
The authors used machine learning techniques to identify
and classify individual websites into three main groups,
namely dating, gambling and health insurance. When DNS
messages are not padded, they show that DoT traffic can
be categorized with 0.07 FNR and 0.05 FPR. Moreover,
individual websites can be identified with a false-negative
(false-positive) rate of 0.17 (0.005).

In [65], authors studied the effectiveness of traffic
analysis attacks on DoH traffic. Authors show that fea-
tures traditionally used for website fingerprinting are not
suitable for DoH traffic analysis. Therefore, they engi-
neer a new set of features and show that the proposed
DoH traffic analysis is effective in identifying web pages.
However, the study also shows that training a model
in an environment other than the one where the model
would be actually deployed, has a negative impact on the
performance.

Most of the recent studies focus on how to reveal
the content of the encrypted DNS messages and apply
filtering/censoring accordingly, or even countering these
mechanisms; but none of them comprehensively treats the
specific problem of identifying DoH traffic itself. While
identification is straightforward in case of DoT (by well-
known port number 853), the latest work on DoH [65]
assumes the relevant DoH packet stream to be readily
identified.

A very recent work [69] attempted to differentiate
DoH from Web traffic by different ML techniques. The

1. Note, unlike IP addresses, when a given service scales up and down,
the number of JA3 hashes can easily rise and fall in a very short time.

proposed model detects DoH traffic and also identifies
DoH clients with high accuracy. However, it differs from
our work in multiple aspects. First, all features are de-
fined at a flow-level. This allows the flow-based model
to better capture the semantics of a DoH (TCP) con-
nection (in comparison to a packet-based approach), as
a flow contains more information. But this also means,
feature computation would have to wait until the flow
is completed. This also has deployment implications as
explained in §3. Our model uses packet-level features;
extraction of a feature corresponding to a packet depends
on utmost one (immediately) preceding packet. Second,
the features in the flow-based model also requires bidi-
rectional flows; whereas our model features are extracted
from unidirectional traffic (from client to server). Note
that, not all ISPs/ASes would see bidirectional traffic of
users; thus the bidirectional features are not available
for all adversarial ISPs. Third, the flow-based analysis is
carried out on one long-lasting connection (having all the
DNS queries resolved), whereas in our case the connection
to the DoH resolver is re-established for every domain
visited. Finally, the evaluation is limited to a closed-world
setting, without information about the DoH resolver used
and other relevant aspects (e.g., geographical location).
In contrast, we present results on both closed-world and
open-world settings (§4.4), and on a diverse dataset (§4.1).

From the perspective of a censoring ISP, in [40], a
DoH downgrade attack is studied, wherein different tech-
niques (e.g., DNS traffic interception, cache poisoning,
TCP RST injection) at different stages of the connection
establishment (e.g., Do53 to obtain the IP of the DoH
resolver, when connecting to a DoH resolver) are inves-
tigated to hinder the use of any DoH service. According
to the opportunistic profile (defined in RFC 8031 [22]) all
major web browsers implement, a default action whereby
the victims seamlessly fall back to Do53 without explicit
notification. However, the evaluation has been done in
a controlled environment where the attacker is aware of
which connection belongs to DoH (and which do not).
In contrast, here, we argue that the very first step of
differentiating DoH traffic from Web traffic is a critical
part of any censoring efforts, and therefore we address
this specific problem here.

An empirical study by Gillmor [29] has revealed that
merely analyzing the packet size of a single encrypted
DNS transaction can narrow down the queried domain.
In a subsequent study [8], authors show that even if
the reasonable padding strategy is used, a side-channel
analysis on the encrypted and padded DNS traffic (DoT
or DoH) can still correctly identify all connections for
32% of the websites considered (Alexa top-10k). In our
analysis of countering the proposed model, we confirm
that the advised padding technique (also recommended in
RFC 8467 [51]) does not help in blending DoH traffic
more with the Web traffic either. We term this padding
technique as PT(1) in §6.2.

3. Threat Model

The primary goal of the attack we present is to
distinguish encrypted DoH packets from HTTPS Web
packets. We consider censorship adversaries (such as, ISPs
in repressive regimes, local administrators with draconian

Internet policies) as the main perpetrator. Our DoH iden-
tification makes a necessary intermediate attack step for
achieving low-cost censorship against users using DoH.
Without distinguishing DoH from Web, a censorship ad-
versary learns absolutely no DNS information and, thus,
is left with only high-cost and ineffective censorship op-
tions (see the available vectors in §2.2). After identifying
DoH packets, a censorship adversary can downgrade the
identified DNS sessions to Do53 by blocking the corre-
sponding packets, rendering existing DNS-based low-cost
censorship effective again.

The secondary, yet important, goal of the attack is
to achieve extremely low false-positive rates to prevent
any noticeable disruption of non-DoH Web sessions. Note
that a moderately low (e.g., a few percent) false positive
rate may be sufficient enough for some strong censorship
adversaries (e.g., countries under dictatorship) as they
may be less concerned about collateral damage. However,
sneaky or mild censorship adversaries may require false
positive rates to be lower than the natural packet loss-rates
of the Internet (e.g., in the order of 0.001 [9]) to cause
only negligible degradation of non-DoH Web sessions.

In this work, we consider an adversary who is capable
of monitoring all HTTPS packets of interest (i.e., Web and
DoH sessions made by target citizens or employees), yet,
unable to decrypt the end-to-end encrypted HTTPS pack-
ets. Our censorship adversary is able to collect and tem-
porarily store some minimal per-packet metadata of the
flows of interest, e.g., packet length, inter-packet arrival
rates (see exact properties in §4.1). This can be achieved
with an in-line adversarial monitoring application.
Scope and assumptions. When evaluating the effective-
ness of our DoH identification attack, we consider a
comprehensive list of padding mechanisms for all the
features we use in the attack. This includes the existing
padding proposals (e.g. RFC 8467 [51]), and a number of
our own novel padding schemes.
Detection granularity: packet-level vs. flow-level. We
propose a packet-level detection, where the classification
between DoH vs. Web is made for each packet. A flow-
based detection is also possible as presented in a recent
work in [69]. We choose a packet-level detection granu-
larity as it can be applicable to more general censorship
applications for two reasons: (1) a packet-level detection
can enable flow-level filtering while a flow-level detec-
tion cannot be used for packet-level filtering; and (2)
a packet-level detection can perform immediate filtering
(thus, immediate censorship) without waiting for a flow
to complete.

4. Machine Learning for DoH Identification

When communication is encrypted, the payloads are
no more available to help identify the traffic class (DoH
or Web) to which a certain packet belongs to. For a
network adversary with the capability to passively monitor
communications, the only data that can be observed are
the visible parts of a packet stream (e.g., packet headers),
which do not tell directly what kind of communication
is being carried underneath the protocol (HTTPS). While
traffic properties, such as packet length, do appear useful
in differentiating DoH and Web traffic (§5), a simple set
of rules cannot help to make the clear distinction (see

later in §4.1 and Fig. 2). This leads us to apply machine
learning algorithms to build models that classifies HTTPS
traffic into the two classes.

4.1. Data Gathering

Following the traditional workflow of a state-of-the-
art machine learning task, we first focus on accurately
capturing the data that is required for analysis as well
as model building and evaluation. We create an easy-to-
deploy Docker container bundled with several Python and
BASH scripts that automate the whole process2. Within
the container, a Mozilla Firefox browser is instructed
via the Selenium API to visit the first 20,000 domains
from Alexa’s list of top 1 million websites [3]. And
for resolving their domains, we configure the browser to
use the four most popular DoH resolvers available (cf.
Appendix A.1) — Cloudflare, Google, Quad9, and
Cleanbrowsing, one at a time. Later, we gather traffic
traces from 21 less popular resolvers as well, e.g., from
OpenDNS, LibreDNS, Comcast, etc. [20]. Firefox is
opened and closed between two consecutive visits to flush
the DNS cache. Visiting 20,000 websites, capturing and
processing the corresponding traffic traces take around 48
hours for our containers (because of safe grace periods,
long timeouts for websites that do not load quickly, etc.).
Thus, our website visits are always spanning across two
days irrespective of the location where we record it.
Diversity. Since not all networks, browsers, architectures
and DoH services behave identically, the properties (both
absolute and relative) of the DoH communications can
vary across time, location and environment. For instance,
even though DoH is a standard, there is no further de-
mands from the DNS protocol itself. Consequently, a DNS
query might contain multiple domains to be resolved,
or EDNS CS, thereby resulting in different packet sizes
among different implementations. Therefore, to rigorously
verify and improve the robustness of our model, we
also gather data at different geographical locations using
multiple environments. In particular, we collect traces
on x86 architectures from cities across different conti-
nents including South America (Locx86A), North Amer-
ica (Locx86B), and Asia (Locx86C). By taking advantage
of Cloudlab’s facility [68], the North American dataset
is divided into three subsets. In particular, Locx86B1 and
Locx86B2 are gathered in the eastern and western side of
the U.S, respectively. LocarmB1 is gathered at LocB using
arm architecture. See more details in Appendix A.13.
Labeling. During the automated website visits, we cap-
ture the corresponding encrypted traffic trace filtered on
port 443 (default destination port for HTTPS communica-
tions) along with the TLS keys to later decrypt the com-
munication for labeling purposes; we label each packet as
either DoH or Web. To achieve this, we use the protocol
identification feature of the most recent version (v3.2) of
tshark/Wireshark (that already supports DoH), with
some correction (see Appendix A.2 for details). Finally,
we export all relevant packet header information (i.e.,
visible meta data and packet headers) into CSV files that

2. For the sake of reproducibility and fostering further research, we
publish the Docker containers used for data gathering as well as the
source codes of our models [17]–[19].

75 250 500 750 1000 1250 1500
Packet size [B]

0

5

10

15

20

Pe
rce

nt
ag

e o
f a

ll p
ac

ke
ts

Web
 DoH

(a) Distribution of packet
length (bin size: 10 bytes)

0 100 200 300 400 500
Time lag [us]

0

5

10

Pe
rce

nt
ag

e o
f a

ll p
ac

ke
ts

Web
 DoH

(b) Distribution of time lag
(bin size: 5 µs)

Figure 2: Distributions of the DoH and Web packets, for
traffic for the four prominent DoH resolvers.

can be processed to carry out training and testing of
different machine learning models.
Balance. The datasets we gathered are imbalanced in
nature, there are more Web packets than DoH packets.
While we use balanced dataset for training, we stick to
the original imbalanced ratio for testing our models.
Features. Packet headers contain only absolute and static
values such as source and destination IP addresses, source
and destination port numbers, sequence number, times-
tamp, transport protocol, etc. These values cannot be used
as features for building a machine learning model, since
they do not capture the dynamism of the Internet; e.g.,
as mentioned in §2.2.3, IP address is not a reliable infor-
mation for identifying DoH traffic. Instead, we engineer
a small number of features from two basic information
— packet size and time lag (inter-arrival time between
packets) — that can be easily extracted from network
traffic. Fig. 2a and Fig. 2b give the distributions of packet
size and time lag, respectively. In both figures, we ob-
serve considerable overlap between DoH and Web traffic,
thereby making simple rule-based differentiation of DoH
and Web challenging.

Therefore, to build a DoH identification model, we
engineer four simple features derived from packet size
and time lag: the current packet length (pkt_len),
previous packet’s length (prev_pkt_len), the inter-
packet arrival time between the current and the pre-
vious packet (time_lag) and the same time be-
tween the two preceding packets (prev_time_lag)
within a flow. We use f to denote the feature vector;
f = {f1, f2, f3, f4} = {pkt_len, prev_pkt_len,
time_lag, prev_time_lag}.

4.2. Choosing the Right Model

We evaluated six machine learning models, namely,
Support Vector Machines (SVM), Decision Trees (DT),
Random Forest (RF), AdaBoost Classifier (ABC), Naı̈ve
Bayes (NB), Logistic Regression (LB), in classifying traf-
fic on port 443 into Web and DoH. The evaluation was
carried out on the data gathered using Cleanbrowsing’s
DoH resolver. The Precision-Recall curve (see Sec. 4.4
for explicit definitions) is given in Fig. 3. While RF, ABC
and DT perform the best, we choose RF for all further
analyses, as RF is not only fast in prediction, but is also
generally known to perform well in other related scenarios
involving network traffic [31], [38], [67]. Appendix A.3
discusses the model hyper-parameters.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

SVM DT
RF ABC
NB LR

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

SVM DT
RF ABC
NB LR

Figure 3: Precision-Recall curves for all ML models con-
sidered applying a 90:10 training-testing ratio on the data
gathered using Cleanbrowsing’s DoH resolver.

4.3. Building the Models

To build DoH identification models, we use the Python
programming language and rely on its machine learning
modules and libraries (primarily, scikit-learn [62]).
We train three different models, each time making im-
provements from one model to the next.

First, we take a naı̈ve approach, and train four distinct
sub-models for the four well-known resolvers consid-
ered using ∼4M packets for each. We refer to the four
models as M1−X , where X ∈ { CF, G, CB, Q9 }.
Henceforth, CF, G, CB, and Q9 abbreviate Cloudflare,
Google, Cleanbrowsing, and Quad9, respectively.

Second, we train one aggregated model M2a using
data of all the above-mentioned four resolvers combined
(∼16M packets). Then, we further analyze the traces and
patterns to look for possible improvements (explained
in §5.2); and eventually we retrain the model with the
updated dataset obtaining M2b.

Finally, we hand-pick three additional less-known
DoH resolvers (cf. §4.1) to train our final model M3. In
particular, as we test the performance ofM2b on data not
used for training at all (cf. §4.4), the resolvers for which
the modelM2b performs the worst are also used (besides
the data for the aggregated model) for training the new
model. Thus, the final modelM3 is trained on the data we
gathered using seven DoH resolvers, i.e., on CF, G, CB, Q9
and three further ones (OpenDNS, doh.li, OpenDNS).
Refer to Table A.2 in Appendix for a short summary.

To evaluate the robustness of our models, we choose
one location, LocC for training, and test on the data
gathered from all other locations and environments. The
only exception is, when we evaluate the performance of
localized models in §5.4.1.

4.4. Testing the Classification Models

According to our different models, we divide our test-
ing into different scenarios w.r.t. the number of resolvers
and traffic traces considered at a time. We first describe
the metrics used for evaluating the models.
Performance metrics. True positives (TP) are the packets
correctly classified as DoH and false positives (FP) are
the Web packets misclassified as DoH. Accordingly, the
false-positive rate (FPR) and false-negative rate (FNR) are

0.9 0.95 10.9

0.95

1

Recall

Pr
ec

isi
on

90:10
80:20
70:30

0.9 0.95 10.9

0.95

1

Recall

Pr
ec

isi
on

90:10
80:20
70:30

(a) PRC for M1−CF

0.9 0.95 1
Recall

0.9 0.95 1
Recall

(b) PRC for M1−CB

0.9 0.95 10.9

0.95

1

Recall

Pr
ec

isi
on

0.9 0.95 10.9

0.95

1

Recall

Pr
ec

isi
on

(c) PRC for M1−G

0.9 0.95 1
Recall

0.9 0.95 1
Recall

(d) PRC for M1−Q9

Figure 4: Precision-Recall curves for all four prominent
resolvers with different training-testing ratios. Common
legend as in Fig. 4a.

calculated as FP
(FP+TN) and FN

(FN+TP) , respectively (where TN
is the true negatives and FN is the false negatives).

From these metrics, we derive precision, recall, F1-
score and accuracy. While precision gives a measure of the
fraction of true DoH packets among all packets classified
as DoH (TP

TP+FP), recall denotes the fraction of true DoH
packets that are correctly classified as DoH (TP

TP+FN or
1− FNR). F1-score is a harmonic mean of precision and
recall (2× Precision×Recall

Precision+Recall). Accuracy is the fraction of the
correct ones among all classifications (TP+TN

TP+TN+FP+FN). For
imbalanced dataset, precision, recall and F1-score are bet-
ter metrics than accuracy for measuring the performance
of a model, since they do not get biased by the larger class.
Therefore, we use F1-score for our discussions on results
here; we also plot the Precision-Recall curves as and
when necessary. In addition, when it comes to practical
deployment and countermeasures, we also present the
recall of the models for significantly low FPR values.
Appendix A.7 details all other important metrics for our
models.
Training-testing ratio. Before proceeding into the de-
tailed experimentation, we first choose the proper training-
testing ratio. In Fig. 4, the Precision-Recall curves can be
seen in the domain of [0.9 : 0.9] for the four baseline sub-
models M1−X (cf. §4.3) considering different training-
testing ratios of 90:10, 80:20, and 70:30. Note the common
legend denoted in Fig. 4a. As we can observe, none of the
different training-testing ratios have any significant im-
pact. Therefore, henceforth we choose to apply the 90:10
training-testing ratio for all evaluations. Note, training and
testing are done on (non-overlapping) partitions of the
datasets throughout all experiments in this work.
Closed-world and open-world. When it comes to test-
ing, we use either closed- or open-world settings, differing
in the dataset used for testing the models. In closed-world

setting, the dataset used for training and testing are for the
same resolvers and the same set of domains visited. To
confirm the performance in this setting, we also evaluate
each model with k-fold cross-validation with k = 5.
For open-world settings, we have two definitions. In case
of OW1, we test the models on data corresponding to
resolvers unseen in the training phase (but for the same
domains visited); while in OW2, the testing dataset corre-
sponds to both new resolvers and new domains visited. In
OW2, to gather new domains, we randomly select a batch
of 5000 domains from Alexa’s list within the range of
[5000, ..., 20000]. Recall, we apply the 90:10 training and
testing ratio. For instance, the model trained on the four
most prominent DoH resolvers when visiting the first 5000
domains is considered as closed-world setting. In contrast,
when the same model is tested on, say, Comcast’s DoH
resolver, it is considered as an OW1, and if the visited
domains are also different, it is considered as OW2.
Testing scenarios. In the first scenario (§5.1), S1, we
evaluate each naı̈ve sub-model M1−X in a closed-world
setting. Data-wise, considering the 90:10 training-testing
ratio, this means ∼3.6M packets are used for training,
and ∼400K packets are used for testing each sub-model.

Next, we evaluate each sub-model in a open-world
setting, i.e., a trained sub-model for one specific resolver
(e.g., M1−CF) is evaluated on the data gathered for the
other prominent resolvers (e.g., Google), one at a time.
And this is carried out for each of the sub-models. Note,
in this case, each testing dataset has a size of ∼4M
packets and contains no packets captured for the resolver
a particular sub-model is trained on.

In the second scenario (§5.2), S2, we evaluate the
aggregated model M2a trained on the data for the four
prominent resolvers (i.e., CF, G, CB, Q9) in a closed-
world setting, then refine the dataset and train and eval-
uate a new model M2b as explained in §5.2. Subse-
quently, we randomly select ten more publicly available
DoH resolvers from [20] for our open-world evalua-
tions, namely PowerDNS, doh.li, Comcast, DNSSB,
Flatuslifir, LibreDNS, OpenDNS, CZNIC, 42l,
and ContainerPI.

In the third scenario (§5.3), S3, our further aggregated
model M3 is evaluated in a similar way. First, it is
evaluated in a closed-world setting, i.e., our final model
trained on the data of seven DoH resolvers are tested for
the same resolvers. Then, the model is tested in the open-
world settings by testing on all the remaining publicly
available DoH resolvers (totaling 25 in count [20]), and a
new set of domains different from those used in training.

Finally (§5.4), we analyze the DoH identification mod-
els from the perspective of an adversary. For the best mod-
els, we evaluate their detection capabilities at stringent
false-positive rates (FPRs).

5. Evaluation of DoH Identification Models

5.1. Scenario S1: Naı̈ve Sub-Models

The performance of the naı̈ve sub-models M1−X is
summarized in Fig. 5, where the y axis shows the F1-
score of each sub-model tested on the data gathered on
all four resolvers. We see that, while the models perform

M1−CF M1−G M1−CB M1−Q9

0
0.2
0.4
0.6
0.8
1

Naı̈ve sub-models

F
1
-s

co
re

Cloudflare Google

Cleanbrowsing Quad9

Figure 5: F1-score of different models on different traces.

quite well (with F1-score of 0.9894 on average) in the
closed-world setting, in case of the open-world setting,
on average, the F1-score (precision and recall) degrades
by ∼82% (∼36% and ∼87%, respectively).
Closed-world. We observe that the model trained on
Cleanbrowsing (beige bar at M1−CB) performs the
best having an F1-score of 0.9957. Quad9 (gray bar at
M1−Q9), on the other hand, achieves relatively the worst
performance but with still a high F1-score of 0.984. k-
fold Cross-validation also gave similar results (cf. Ap-
pendix A.4).
Open-world. In this setting, we observe a slightly differ-
ent tendency. While M1−G gives the best results (second
stack of bars) when tested on the traces of all the other
resolvers (F1-score of 0.3755 on average), M1−CF (first
stack of bars) provides the worst average F1-score (0.01).
On the other hand, while M1−G provides ∼0.7883 F1-
score for Quad9, it is hardly useful in identifying DoH
traffic to the other two resolvers.

5.2. Scenario S2: Aggregated Model

We have seen that while the individual models perform
quite well in the closed-world setting, their performance
is unacceptably low when we cross-evaluate them.
Closed-world. We first train an aggregated model, M2a,
with all traffic traces gathered using all four resolvers
combined; recall, the combined trace has more than 8 mil-
lion packets. M2a provides an F1-score of 0.977. We
observe, the model trained on this combined data dras-
tically decreases the false-negative rates in comparison to
the naı̈ve models, when testing on data corresponding to
all resolvers (cf. §5.1). For exact values, refer to Table A.3
in the Appendix.

Continuing analyzing our model, we (i) look into the
most useful features for classification. Then, to improve
the performance, i.e., to reduce the false positives and
false negatives further, we (ii) analyze the datasets.

For (i), we use SHAP [49], a game theoretic ap-
proach that uses the classic Shapley values to explain
the output of machine learning models. In essence, we
found that the relative features prev_pkt_len and
prev_time_lag are the most important ones, however
the impact of the other two absolute features are also sig-
nificant (cf. §A.5). This finding also justifies our relabeling
endeavors after data gathering (cf. §4.1).

Subsequently, (ii) taking a closer look at the actual
false positives after the latest testing phase, we observe
that most of them are attributed to the DoH responses
having similar properties with the Web requests. Partic-
ularly, most of the false positives belong to the subset
of Web requests having feature values (especially for the

Po
w

er
D

N
S

D
oh

.li

C
om

ca
st

O
pe

nD
N

S

D
N

S.
SB

Fl
at

us
lifi

r

L
ib

re
D

N
S

A
42

l

C
Z

N
IC

C
on

ta
in

er
PI

0
0.2
0.4
0.6
0.8
1

F
1
-s

co
re

OW1 OW2

(a) Performance of M2b.

D
N

S.
SB

Fl
at

us
lifi

r
L

ib
re

D
N

S
A

42
l

C
Z

N
IC

C
on

ta
in

er
PI

A
dg

ua
rd

A
&

A
B

la
hD

N
S

D
ig

ita
lG

D
ns

lif
y

FF
m

uc
H

E
.N

E
T

Pi
D

N
S

Ti
ar

ap
T

W
N

IC

0
0.2
0.4
0.6
0.8
1

F
1
-s

co
re

OW1 OW2

(b) Performance of M3.

Figure 6: F1-score of M2b (6a) and M3 (6b) in both
open-world settings, considering eleven and all remaining
publicly available DoH resolvers, respectively.

feature pkt_len) similar to the DoH responses (see a
comprehensive view of the statistics in Appendix A.6).

Consequently, we remove both DoH and Web response
packets from our dataset3 and we focus on the requests,
i.e., outgoing traffic, exclusively for the rest of our study
when training (and testing) a model. With this modifica-
tion, F1-score of our retrained aggregated model (M2b)
in the closed-world scenario increases up to 0.9911. Note,
for k-fold cross-validations, refer to Appendix A.4.
Open-world. Next, we evaluate M2b on traces we
obtain by using additional publicly available DoH re-
solvers [20]. In particular, we randomly pick ten additional
DoH resolvers, namely PowerDNS, doh.li, Comcast,
DNSSB, Flatuslifir, LibreDNS, OpenDNS, 42l,
CZNIC, and ContainerPI, and evaluate our model for
OW1 and OW2 settings.

F1-scores for these ten resolvers are depicted in
Fig. 6a. We observe that for the best five (i.e., DNSSB,
ContainerPI, PowerDNS, 42l, LibreDNS) out of
the ten randomly selected resolvers having F1-scores
above 0.97, our latest model provides an average F1-
score of 0.9766 (0.9754) in OW1 (OW2). On the other
hand, considering only the three worst performing ones
(Comcast, OpenDNS, doh.li), the average F1-score
drops down to 0.3755 (0.3738) in OW1 (OW2). The main
reason behind this significant drop can be attributed to the
considerably higher false-negative rates; on average it is
0.666 (0.658) for OW1 (OW2). In case of doh.li (F1-
score: < 0.00008), furthermore, it was even observable by
the human eye that for all important features, the mean
values (with standard deviation) and 75-percentiles of the
packets falling in the DoH class are significantly greater

3. Note, the datasets also become more balanced as the number of
Web packets is highly affected by the large responses (§A.7).

than the corresponding values of the aggregated trace our
model is trained on.

On the other hand, we also observe that the different
open-world settings have negligible effect on the perfor-
mance concluding that the accuracy of the model is not
affected by the domains visited but only by DNS resolvers
for which the data is collected.

5.3. Scenario S3: Final Optimized Model

Since for some resolvers our model M2b performs
bad, i.e., our model operates with considerably high false-
negative rate, we aggregate the corresponding traces4 to
our previous training data set (consisting of the four
prominent resolvers only), retrain our final model (M3),
and evaluate its performance. The feature preferences has
slightly changed (cf. Fig. A.3).
Closed-world. In this setting, we test the performance
of M3 on the traces obtained by using DoH resolvers
Cloudflare, Google, Cleanbrowsing, Quad9,
Comcast, OpenDNS, and doh.li (∼13M data points).
The overall accuracy indicators are almost identical to
the closed-world setting of (M2b). In particular, this fi-
nal model has an F1-score of 0.9908 with a FPR and
FNR of 0.0095 and 0.012, respectively. The k-fold cross-
validation results are given in Appendix A.4.
Open-world. Finally, we test our model’s performance
on the traffic traces obtained by using the rest of
the publicly available DoH resolvers, namely DNSSB,
Flatuslifir, LibreDNS, ContainerPI, 42l,
AdGuard, Andrews & Arnolds, BlahDNS,
Digitale Ges., Dnslify, FFmuc, HE.net,
PiDNS, Tiarap, and TWNIC. The results are given
in Fig. 6b. We observe that the average F1-score of
M3 becomes 0.9764 for OW1 (0.9737 for OW2) with
FPR and FNR, of 0.006 (0.0054) and 0.042 (0.038)
for OW1 (for OW2). In particular, on average for both
open-world setting, M3 performs the best for DNSSB
with F1-score of 0.9879 with FPR and FNR of 0.0064
and 0.02, respectively. On the other hand, the worst
results are obtained for PiDNS with a low F1-score of
0.957 with FPR=0.004 and FNR=0.08. Similar to S2,
the impact of the domains visited is negligible. Refer to
Appendix A.8 for a brief performance evaluation when a
DoH resolver and its regular web service reside behind
the same IP address. For more accuracy metrics and
additional analysis on a set of very recent resolvers, see
Table A.6 and Fig. A.8 in the Appendix, respectively.

5.4. Robustness of the DoH Identification Model

When it comes to the deployment of a DoH filter, as
mentioned earlier, the key deciding factor an ISP would
consider is the false-positive rate (FPR). Every false posi-
tive results in unintentional filtering of a Web packet. For
a model to be put to use, even an adversarial ISP would
prefer the model to achieve high detection rate (i.e., recall)
at low FPRs, i.e., FPRs of 10−2, 10−3, and 10−4. A low
FPR of 10−4 translates to falsely classifying (and thus

4. Due to the similar performance in both open-world settings, here,
we only use the traces in OW1 for the aggregation.

10−1 10−2 10−3 10−4
0.8

0.9

0.97
1

False-Positive Rate (FPR)

R
ec

al
l

(T
PR

)

Locx86
A Locx86

B1 Locx86
B2

Locarm
B1 Locx86

C

Figure 7: Recall at different FPRs, for the localized models
(M2b) in closed-world setting.

filtering) 1 in 10K (encrypted) Web packet only, which
we believe can be tolerated.

To this end, we first evaluate to what extent the loca-
tion has an impact on the recall. Intuitively, according
to the features our models consider, a model trained
on one location is best suited to capture the network
characteristics of that specific location. Hence, we train
a model based on data from one location, and test the
model at the same specific location; we refer to this
as a localized model. However, we have data collected
for all resolvers only at LocC; for all other locations,
the common resolvers are the four prominent resolvers.
Therefore, we take two steps to evaluate the localized
models. We first use M2b and train localized models of
M2b at all locations, but in a closed-world setting. Second,
since we have data for all resolvers at LocC, we evaluate
the best modelM3 in a localized way, under both closed-
world and open-world settings. Finally, we also evaluate
M3 across different locations, at low FPRs.

5.4.1. Localized models based on M2b. As mentioned
above, for each location, we use the location-specific data
to train a modelM2b and test it in a closed-world setting.
Note, we choose M2b because it is based on the four
prominent resolvers that are common across all locations.
Fig. 7 plots the results. We observe that localized models
correctly identify more than ∼97% of the DoH traffic
while misclassifying only 1 in 10K Web packets. See
Fig. A.5a in the Appendix for a complete rundown of
the recall values.

5.4.2. M3 at LocC. Since at LocC we have gathered data
for 25 DoH resolvers, we are able to analyze the detection
capability of M3 at low FPR values in both closed-
and open-world settings. Note, M3 is trained on seven
resolvers including the four prominent ones (cf. §5.3).
The results (depicted in Fig. A.5b in the Appendix) are
the following. We observe that for an FPR of 10−3

(10−4) more than 99.3% (97.4%) of the DoH traffic is
accurately identified in the closed-world setting. While the
performance slightly drops for the open-world setting, the
identification rates of DoH packets are still high; for FPRs
of 10−3 (10−4), the recall is ∼93% (∼90%).

5.4.3. M3 at different locations. We take our best-
performing model M3 and evaluate its performance on
the data gathered at locations other than LocC. Note, this
model is trained on data from LocC, and the data used for
testing is based on the four prominent resolvers only. We
observe in Fig. 8 that even at low FPRs of 10−3 (10−4),
our model can identify more than 95% (90%) of the DoH

10−1 10−2 10−3 10−4
0.7

0.8

0.9

1

False-Positive Rate (FPR)

R
ec

al
l

(T
PR

)

Locx86
A Locx86

B1

Locx86
B2

Locarm
B1

Figure 8: Recall ofM3 at different FPRs, and at different
locations and environments.

traffic in x86 architectures. On the other hand, on the
data gathered on arm architectures, the same F1 scores is
∼90% (∼80). Fig. A.5b in the Appendix plots the recall
values at multiple FPRs for different locations.

5.4.4. Summary. Ultimately, the results indicate that
while our model is most accurate when deployed at the
same location where it is trained (∼97.4% and ∼90%
recall at FPR of 10−4 in the closed- and open-world
setting, respectively), it is sufficiently robust to be used
across different locations, i.e., ∼90% (80%) at FPR of
10−4 on x86 (arm) architectures. This also enables our
model to be incrementally deployed, i.e., after deploying it
at any location, we can gradually improve its performance
by gathering data at the same location and, occasionally,
re-train the model offline. Alternatively, one can also
train an independent identification model for each location
based on the specific location’s data.

6. Countering DoH Identification w/ Padding

The results above imply that an authoritarian ISP can
employ our DoH identification model to identify DoH
packets accurately and deploy filtering mechanisms to
force its users to fall back to traditional plain-text DNS.

In this section, we develop and evaluate multiple tech-
niques to counter such a DoH identification model.

In other words, our goal here to make DoH traffic
indeed indistinguishable from Web traffic; to achieve this
privacy-enhancing vision, we investigate to what extent
the detection capability of our model can be decreased.

6.1. Padding techniques

Since the features of the identification model are based
on packet size and time lag between packets, manipulation
of these form the crux of our techniques. This is achieved
by padding additional bytes (time) on to the existing
packet size (packet inter-arrival time). Padding has already
been proposed for DoT and DoH protocols to counter
traffic analysis posing [29], [51]. However, prominent
implementations (e.g., Bind [42], Knot [21]) and open re-
solvers (e.g., Cloudflare) are still in an experimental state
regarding these current padding policies, and it has been
shown that such simple padding is not always a practical
solution against traffic analysis [8]. Our evaluation of the
padding technique in RFC 8467 [51] (defined as PT(1)
below) also demonstrates that the proposal is ineffective
in countering our DoH identification model.

Unsurprisingly, a model trained on the original non-
padded dataset can be easily evaded even by naı̈vely

padding each DoH packet with a random length (such
that the packet size does not exceed the MTU); see a brief
study in the Appendix A.11. An adversary, on the other
hand, can also easily generate such traffic patterns and
retrain her identification model using the padded dataset.
Hence, for a fair and meaningful study, we need to test
the padded data on a model trained on the padded data.

Therefore, we are interested in developing countering
techniques that deceive even such models.

To clearly understand the effect of padding, we first
train a new model using only the pkt_len feature and
evaluate its performance for different padding techniques
applied for all DoH packets. Subsequently, we target the
manipulation of each additional feature. We consider the
following padding techniques (PTs).
PT(0): This serves as the baseline, where no padding
technique is applied on the dataset.
PT(1): We apply fixed padding according to
RFC 8467 [51], which suggests each client to pad
queries to the closest multiple of 128 bytes5.
PT(2): We pad each DoH packet with a random length
such that the size of the padded packet does not exceed
the MTU.
PT(3): We assume the size of Web packets follow a
Normal distribution and estimate its parameters (mean and
standard deviation) from the Web traffic in the original
dataset. For each DoH packet, we sample from this dis-
tribution a random value, say X , and pad the packet so
as to set the packet size to X . If the original DoH packet
size is smaller than X , we obtain a new sample from the
distribution and pad accordingly.
PT(4): We continuously maintain a list of the past n
consecutive Web packets; LW

n = [pW1 , pW2 , ..., pWn]. For
each DoH packet, we pad its size to pWr , the size of
a randomly chosen Web packet from this list, where
r = RANDOM(1, n). If for a DoH packet pDk , there is
no pWi : pWi > pDk (i ∈ [1..n]), we fall back to PT(3).
PT(5): To increase the correlation between sizes of sub-
sequent packets sizes, we amend PT(4) as follows. For
a consecutive sequence of d (d < n) DoH packets
(LD

d), we obtain LW
d as a sub-sequence of LW

n , where
LW
d = [pWr , pWr+1..., p

W
r+d], and r = RANDOM(1, n).

Then, we pad each DoH packet pDk ∈ LD
d , k = [r, ..., r+d]

to the size of the kth Web packet pWk ∈ LW
d . In practice,

however, we do not know in advance, after transmitting
a DoH packet whether the number of the subsequent
DoH packets will become greater than n. Thus, when
(r + d) > n, we take a new r and obtain LW

d =
[pWr , pWr−1..., p

W
r−d] again. Furthermore, if pDk > pWk , i.e.,

when the available new size of a DoH packet is smaller
than the actual one, we replace the new size with the first
pWk ∈ LW

n , k = RANDOM(1, n), such that pWk < pDk .
Finally, similar to PT(4), if @pWk : pWk > pDk , we apply
PT(3).

For training, we consider the datasets corresponding
to the four prominent resolvers only, while for testing,
first, we focus on the closed-world setting as we aim to
decrease the performance in the ideal case as much as
possible. Then, we evaluate the performance of the final

5. Although RFC 8467 recommends the server to pad the responses
to a multiple of 468 bytes, recall, our model is based only on requests.

padded model (trained on the four prominent resolvers) in
the open-world setting.

6.2. Evaluating padding techniques on packet size

In this section, we focus only on the two fea-
tures related to packet sizes, namely pkt_len and
prev_pkt_len. First we only consider pkt_len as
a feature for modeling, and evaluate the performance of
the model trained on the original dataset as well as the
padded datasets for this particular feature. Subsequently,
we include the feature prev_pkt_len for training and
testing the padding techniques described above. Note,
padding the packet size inherently affects the feature
prev_pkt_len. We refer to the models trained using
feature f1 = pkt_len asMf1

PT(i), and the one trained us-
ing features {f1, f2} = {pkt_len, prev_pkt_len}
as Mf1,2

PT(i). The subscript refers to the padding technique
PT(i), i ∈ {0, 1, .., 5}, since the data used for training,
and hence the model, depends on the specific technique
applied for padding. A summary of the results is given
in Fig. 9. Overall, the results indicate that the accuracy of
the models increase when more features are considered;
(by 5− 10% on average). We explain more details below.
PT(0): Original data set. As baseline, we train two
models, one using only pkt_len and another using both
pkt_len and prev_pkt_len as features; both trained
and evaluated on the original dataset without any padding
technique applied. For the first modelMf1

PT(0), we observe
a high F1-score of 0.8912. The model Mf1,2

PT(0), that has
both features, has an even higher F1-score of 0.975.

The distribution of the Web and the non-padded DoH
packets are plotted in Fig. 10a.
PT(1): Fixed padding. We start with the first padding
technique, wherein we pad each DoH query to the clos-
est multiple of 128 bytes. Not surprisingly, this ap-
proach increases the accuracy of our models regardless
of whether only pkt_len or the compound feature set
{pkt_len,prev_pkt_len} is considered. The F1-
score forMf1

PT(1) (Mf1,2
PT(1)) is 0.9993 (0.9999). The reason

behind this high performance is that, after padding, much
of the distribution of the DoH packet size is now reduced
to ∼232 or ∼360 bytes6, making it easy for the classifi-
cation models to differentiate DoH from Web traffic.
PT(2): Full random. While this approach fully scatters
the packet size values, the resulting F1-score of Mf1

PT(2)

(Mf1,2
PT(2)) is still a high 0.9134 (0.9752). This is because,

statistically, the distribution of the padded DoH packets is
random, and hence not similar to the distribution of the
Web packets.
PT(3): Random, based on distribution of Web packet
size. Next, to make the DoH packet sizes to look similar
to the Web packet sizes, we apply PT(3). This results in
an F1-score of 0.868 for Mf1

PT(3). While this technique is
better than the previous two in reducing the classification
accuracy of the identification model, note that the F1-
score is still close to 90% (given we are using just one
feature for classification). From Fig. 10b, we observe that

6. There is an additional overhead of 9B HTTP2 header, 28 − 32B
TLS Application Data (i.e., encryption, content-type, version, length),
32B TCP, 20B IP, and 14B Ethernet (without the 4-byte checksum).

PT(0) PT(1) PT(2) PT(3) PT(4) PT(5)
0.7

0.8

0.9

1

Padding techniques

F
1
-s

co
re

Mf1
PT(i) M

f1,2
PT(i)

Figure 9: F1-scores of the different padding techniques
in the closed-world setting using features pkt_len and
prev_pkt_len.

the distribution of padded DoH packet size is still different
from that of Web packet size. This is also reflected in the
performance of Mf1,2

PT(3); in comparison, the F1-score of
this model is at a higher value of 0.954.
PT(4): Random preceding Web packet. In order to
further blend the distributions of DoH packet size and
Web packet size, in PT(4), we pad each DoH packet size
to the size of a recent Web packet. To do this, we maintain
a list of the most recent Web packets, and each DoH
packet is padded to (have the size the same as) a randomly
selected packet size from this list. This technique includes
a parameter n to set the length of the list of the recent Web
packets; therefore, we carry out experiments for different
values of n in the set {5, 10, 20, 30}.

The average F1-score (over the different values of n)
of Mf1

PT(4) with this padding technique is 0.824 (with a
negligible standard deviation of 0.0009). The resulting
padded packet-size distribution is shown in Fig. 10c,
where, for brevity, we show the results for n = 20. We ob-
serve that the distribution of the DoH packet size follows
the distribution of the Web packets closely with PT(4). We
also note that since most of the original packet sizes of
DoH traffic are around 110−170 bytes (cf. Fig. 10a), they
are padded to the most frequent pkt_len values of the
Web packets, i.e., to ∼240 and ∼310 bytes (two highest
orange bars). This clearly explains why this technique pro-
vides the worst classification performance so far. However,
for Mf1,2

PT(4), on the other hand, we observe a higher aver-
age F1-score of 0.89 (with standard distribution 0.0033).
This performance improvement while using the additional
feature of prev_pkt_len is also observed with PT(3);
this happens because the bivariate distributions of these
two features extracted from packet size are still different
for the padded DoH traffic and Web traffic. The sizes of
two consecutive Web packets are not independent; while
in PT(4), we do not consider this. To deceive the model
further, we would need to ensure that consecutive DoH
packets have similar size distribution as consecutive Web
packets leading us to PT(5).
PT(5): Random sequence of the preceding Web pack-
ets. We evaluate PT(5), which takes a sequence of Web
packet sizes first, and pads consecutive DoH packets so
that their sizes are set to the same as the consecutive Web
packets. The padded distribution (for n = 20) is depicted
in Fig. 10d. We noted a somewhat different distribution
than in case of PT(4), in particular, a slightly flattened
distribution for packet size greater than 250 bytes. The
average F1-scores of both modelsMf1

PT(5) andMf1,2
PT(5) are

now closer, at 0.812 and 0.8722, respectively (cf. Fig. 9).
Fig. 11a plots the Precision-Recall curves of the base-

75 250 500 750 1000
Packet Size [B]

0

5

10

15

20
Pe

rc
en

ta
ge

 of
 al

l p
ac

ke
ts

Web
DoH PT(0)

(a) PT(0) on pkt_len.

75 250 500 750 1000
Packet Size [B]

0

5

10

15

20

Pe
rc

en
ta

ge
 of

 al
l p

ac
ke

ts

Web
DoH PT(3)

(b) PT(3) on pkt_len.

75 250 500 750 1000
Packet Size [B]

0

5

10

15

20

Pe
rc

en
ta

ge
 of

 al
l p

ac
ke

ts

Web
DoH PT(4)

(c) PT(4) on pkt_len, n = 20.

75 250 500 750 1000
Packet Size [B]

0

5

10

15

20

Pe
rc

en
ta

ge
 of

 al
l p

ac
ke

ts

Web
DoH PT(5)

(d) PT(5) on pkt_len, n = 20.

0 100 200 300 400 500
Time lag [us]

0

5

10

Pe
rc

en
ta

ge
 of

 al
l p

ac
ke

ts

Web
DoH PT(0)

(e) PT(0) on time_lag.

0 100 200 300 400 500
Time lag [us]

0

5

10

Pe
rc

en
ta

ge
 of

 al
l p

ac
ke

ts

Web
DoH PT(5)

(f) PT(5) on time_lag, n = 20.

Figure 10: Distributions of packet size (bin size=10B) and
time lag (bin size=5µs) of DoH packets compared to the
Web packets using different padding techniques.

line model and all models trained and tested with the
padded datasets. It clearly demonstrates the performance
degradation achieved due to PT(4) and PT(5). With the
above experimental study, we conclude that the worst
performance is achieved via PT(5) for both Mf1

PT(5) and
Mf1,2

PT(5). Hereafter, for padding, we apply PT(5).

6.3. Evaluating padding of all features

As we observed, applying PT(5) to both features
related to packet size blends DoH packets the most with
the Web packets making them much less distinguish-
able. In particular, the F1-score of the model trained
and tested on the non-padded reducedby ∼10% in the
closed-world scenario. Next, we manipulate the other
features of the model; i.e., we apply the best perform-
ing padding technique PT(5) to the remaining features
related to the inter-arrival time of DoH packets. We
train and test a new model Mf

PT(5), where (to recall)
f = {f1, f2, f3, f4} = {pkt_len, prev_pkt_len,
time_lag, prev_time_lag}. We also analyze the
impact of n on accuracy. Note, we evaluated all padding
techniques on this new model and observed similar results
as in the case of the model with the packet-size features.

0.5 0.6 0.7 0.8 0.9 10.7

0.75

0.8

0.85

0.9

0.95

1

Recall

Pr
ec

isi
on

PT(0)
PT(1)
PT(2)
PT(3)
PT(4)
PT(5)

0.5 0.6 0.7 0.8 0.9 10.7

0.75

0.8

0.85

0.9

0.95

1

Recall

Pr
ec

isi
on

PT(0)
PT(1)
PT(2)
PT(3)
PT(4)
PT(5)

(a) Based on features pkt_len
and prev_pkt_len.

0.98 0.99 10.7

0.75

0.8

0.85

0.9

0.95

1

Recall

Pr
ec

isi
on

PT(5) n = 5
PT(5) n = 10
PT(5) n = 20
PT(5) n = 30

0.98 0.99 10.7

0.75

0.8

0.85

0.9

0.95

1

Recall

Pr
ec

isi
on

PT(5) n = 5
PT(5) n = 10
PT(5) n = 20
PT(5) n = 30

(b) Based on all features.

Figure 11: Precision-Recall curves for the different
padding techniques on different feature sets in the closed-
world setting.

Therefore, we focus only on PT(5) for this complete
model. Similar to packet size, packet inter-arrival time can
only be increased, i.e., a user might introduce extra latency
but the time lag of the system is already bounded, e.g.,
by hardware limitations, packet processing performance.
PT(0): Original data set. The F1-score of the baseline
model Mf

PT(0) is 0.991; and this is obtained using all
four features trained and tested on the unmodified original
dataset. We present the distribution of time lag for both
Web and DoH traffic in Fig. 10e.
Random sequence of the preceding Web packet. The
padded distribution (for n = 20) is depicted in Fig. 10f.
We observe a much more flattened distribution of time
lag for the DoH packets. The average F1-score ofMf

PT(5)
is 0.945 (with standard deviation 0.001), which is ∼5%
lower than the F1-score of 0.991 achieved by the baseline
model trained on the original dataset. This is also visible
with the Precision-Recall curves plotted in Fig. 11b. Ob-
serve that, with the padding technique PT(5), to achieve
close to 100% recall, the identification model has to
tolerate a limited precision of around 70%. For any useful
deployment, an adversary’s filtering solution would need
to have very high precision. Going by this requirement,
at a fixed precision of 0.9999, while the baseline model
Mf

PT(0) achieves a very high recall of 0.977, the re-
call of Mf

PT(5) drastically reduced to 0.538 (not visible
on Fig. 11b). This means, only around half of the DoH
packets can be identified by a high-precision model. In
Fig. 11b, we also plot the Precision-Recall curves for
different values of n, and shows insignificant differences
on classification accuracy.

Most importantly, we analyze how the padded model
affects the DoH identification rate for low FPRs. Observe
in Fig. 12 that, with PT(5), even at a practically unac-
ceptable FPR of 10−3 (wherein, 1 in 1000 Web packets
would be misclassified as DoH and hence blocked), the
detection capability of the identification model degrades
to 83%. For even lower value of FPR required to be
considered for deployment (i.e., FPR = 10−4), the recall
drops down to 0.53, thereby removing any practical use
of the identification model.
Open-world experiments. After attaining the worst
average F1-score of 0.9458 with Mf

PT(5) in the closed-
world scenario, we analyze this model’s performance in
the open-world setting. In particular, to be on par with our
evaluations in §5, we merge and pad the traces for the five
resolvers from §5.2 that performed the best when tested

10−1 10−2 10−3 10−4
0

0.2
0.4
0.6
0.8
1

False-Positive Rate (FPR)

R
ec

al
l

(T
PR

)
Mf

PT(0)

Mf
PT(5)

Mf
PT(0)(OW1)

Mf
PT(5)(OW1)

Figure 12: Recall at different FPRs, for the (non-)padded
models in the closed- and open-world settings.

0.8 0.9 1
0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

PT(0)
PT(5)

(a) On aggregated data.

0.8 0.9 1
0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

LibreDNS PT(0) LibreDNS PT(5)
A42L PT(0) A42L PT(5)
PowerDNS PT(0) PowerDNS PT(5)
ContainerPi PT(0) Containerpi PT(5)
DNSSB PT(0) DNSSB PT(5)

(b) On individual resolvers.

Figure 13: Precision-Recall curves for the best performing
resolvers in the open-world setting onMf

PT(0) andMf
PT(5).

on M2b (not M3, as it was trained on seven resolvers
instead of the prominent four ones). While Mf

PT(0) tested
on the merged non-padded dataset provides an F1-score
of 0.977, the modelMf

PT(5) trained on the padded dataset
results in an F1-score of 0.9414.

Fig. 13a plots the PRC for the two models. Ob-
serve that, Mf

PT(0) identifies almost 98% DoH packets
with more than 94% precision; whereas, the precision
of Mf

PT(5) drops to below 90% for the same recall. This
essentially means that ∼10% of those predicted as DoH
packets are in fact Web packets; and hence a network
adversary cannot rely on this model for blocking DoH
traffic (∼10% of the time it would end up blocking Web
packets). On the other hand, if one wants to use the model
with a high precision setting7, say at 99.5%, then the recall
that Mf

PT(5) achieves is only 60%, which is significantly
lower than the recall of 0.961 thatMf

PT(0) achieves for the
same precision. Fig. 13b plots the Precision-Recall curves
for the datasets corresponding to the individual resolvers,
for both Mf

PT(0) and Mf
PT(5). Observe in Fig. 13b that

in case of DNSSB, for instance, the recall of 99% at
precision 99.3% can drop down to 65%.

Revisiting Fig. 12 for the open-world setting (OW1),
we see a reflection of the above results when analyzing the
recall at different FPRs. We observe that the padded model
can identify only 68.8% of the DoH traffic correctly at an
FPR of 10−2. For lower FPR values, the recall reduces to
insignificant values (< 0.01). For a more detailed recall
v/s (low) FPR plot, refer to Fig. A.6 in the Appendix.

We conclude that our PT(5) can downgrade the perfor-
mance of the best DoH identification model to the extent
that its practical use is diminished severely.

7. A threshold to classify packets gives one set of results on which we
compute precision and recall. Therefore, setting a specific precision is
achieved by finding the right threshold via multiple runs with different
values for the threshold. This is also why we do not have a fixed precision
throughout the paper.

7. Applicability

Identification model. According to our threat model (§3),
we assume an in-line adversarial monitoring application,
based on our model, is deployed in the network to block
DoH traffic. Once a model is trained, ISPs have multiple
ways to practically deploy it. Programmable data-plane is
one option, considering a recent advancement in support-
ing ML inference at Tbps-rate [73]. Fast packet processing
libraries (e.g., DPDK [44]) can be another option.
Padding-based countermeasures. According to our find-
ings in §6, a victim can pad its own DoH traffic to
deceive the model and eventually establish a connection
to any DoH resolver for domain resolution. Since we need
a priori knowledge on which packets to pad, padding
techniques must be implemented on the victim’s own
system. The ideal solution would be to have the padding
technique implemented as part of the DoH protocol. PT(1)
and PT(2) are examples of such techniques; however, our
study has revealed that they are not effective in countering
the identification model(§6.2).

To beat any identification model that successfully dif-
ferentiates DoH traffic from Web traffic, we argue that
the DoH traffic would need to have characteristics that
are very similar to Web traffic. This requires information
from outside the DoH protocol. Based on our study,
padding techniques requiring knowledge of recent Web
packets, (e.g., PT(5)), should be implemented on top of a
(Smart) NIC instead, leveraging libraries, e.g., XDP [41]
or DPDK [44], to avoid performance penalty. Note, how-
ever, the padding technique running on the NIC has to
be aware of the DoH traffic going to port 443, so that
it knows which packets to pad; this can be achieved via
cross-layer communication within the same system.

8. Conclusions

In this work, we studied the privacy enhancing aspects
of the DoH protocol. We developed a machine-learning-
based identification model that a network adversary, such
as an authoritarian ISP, can use to differentiate DoH pack-
ets from encrypted Web packets (using the same HTTPS
protocol) with high accuracy. We carried out a rigorous
study testing the model on multiple and diverse traffic
traces. To counter a censorship based on our identification
model, we developed a padding technique that effectively
brings down the classification accuracy such that it is not
useful for practical adversarial purposes. Since DoH is
still in its early stage of deployment, we hope our work
triggers more studies on enhancing the privacy aspects of
the protocol. As future work, we plan to have a practical
in-network implementation and use further traffic traces
generated via other clients at other locations.
Acknowledgement. This research is supported by the
National Research Foundation, Prime Minister’s Office,
Singapore under its Corporate Laboratory@University
Scheme, National University of Singapore, and Singapore
Telecommunications Ltd.

The research has also been supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2021R1C1C1008462).

References

[1] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen.
DFD: Adversarial Learning-based Approach to Defend Against
Website Fingerprinting. In IEEE INFOCOM, pages 2459–2468,
2020.

[2] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen. Adversarial Learning Attacks on Graph-based IoT
Malware Detection Systems. In ICDCS, pages 1296–1305, 2019.

[3] Alexa. The top 500 sites on the web. [Online], https://www.alexa.
com/topsites, [Accessed: Oct 2020].

[4] J. Althouse. TLS Fingerprinting with JA3 and JA3S.
Blog post, https://engineering.salesforce.com/tls-fingerprinting-
with-ja3-and-ja3s-247362855967, Jan 2019 [Accessed: Oct 2020].

[5] J. Althouse. Open Sourcing JA3. Blog post, https://engineering.
salesforce.com/open-sourcing-ja3-92c9e53c3c41, Jul 2017 [Ac-
cessed: Oct 2020].

[6] P. Bishoff. Which Countries Have the Strictest Internet Censorship?
Blogpost, https://bit.ly/2SyUVR7, Jul 2019 [Accessed: Oct 2020].

[7] H. Brown, E. Guskin, and A. Mitchell. The Role of Social
Media in the Arab Uprisings. Pew Research Center Journal-
ism & Media, https://www.journalism.org/2012/11/28/role-social-
media-arab-uprisings/, Nov 2012 [Accessed: Oct 2020].

[8] J. Bushart and C. Rossow. Padding Ain’t Enough: Assessing the
Privacy Guarantees of Encrypted DNS. CoRR, abs/1907.01317,
2019.

[9] M. Candela, V. Luconi, and A. Vecchio. Impact of the COVID-19
pandemic on the Internet latency: A large-scale study. Computer
Networks, 2020.

[10] S. Captain. Here’s how to stop your ISP from spying on you.
FastCompany Blogpost, https://www.fastcompany.com/90421616/
heres-how-to-stop-comcast-verizon-and-other-isps-from-spying-
on-you, Oct 2019 [Accessed: Oct 2020].

[11] C. Catalin. Google to run DNS-over-HTTPS (DoH) experiment in
Chrome. ZDNet blogpost, https://www.zdnet.com/article/google-
to-run-dns-over-https-doh-experiment-in-chrome/, Sep 2019 [Ac-
cessed: Oct 2020].

[12] C. Cimpanu. Mozilla Is Testing ”DNS over HTTPS” Support
in Firefox. Blogpost, https://www.bleepingcomputer.com/news/
software/mozilla-is-testing-dns-over-https-support-in-firefox/,
Mar 2018 [Accessed: Oct 2020].

[13] CleanBrowsing. Articles and News, 2018 May. [Online], https:
//cleanbrowsing.org/articles/, [Accessed: Feb 2021].

[14] Cloudflare. What is DNS cache poisoning? — DNS spoof-
ing. [Online], https://www.cloudflare.com/learning/dns/dns-cache-
poisoning/, [Accessed: Oct 2020].

[15] Comcast. Xfinity Internet Joins Firefox’s Recursive Resolver
Program, Committing to Customer Privacy Protection. Press
release, https://corporate.comcast.com/press/releases/comcast-
xfinity-internet-firefox-trusted-recursive-resolver-program-
customer-privacy, Jun 2020.

[16] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari.
Client Subnet in DNS Queries. RFC 7871, Internet Engineering
Task Force, May 2016.

[17] cs.lev. doh docker. Github repository, https://github.com/cslev/
doh docker, [Accessed: Feb 2021].

[18] cslev. doh docker. DockerHub image, https://hub.docker.com/r/
cslev/doh docker, [Accessed: Feb 2021].

[19] cs.lev. doh ml. Github repository, https://github.com/cslev/doh ml,
[Accessed: Feb 2021].

[20] Curl. DNS over HTTPS - Publicly available servers.
[Online], https://github.com/curl/curl/wiki/DNS-over-HTTPS, [Ac-
cesed: May 2020].

[21] CZ.NIC. KNOT DNS. Online, https://www.knot-dns.cz, [Ac-
cessed: Oct 2020].

[22] S. Dickinson, D. Gillmor, and T. Reddy. Usage Profiles for DNS
over TLS and DNS over DTLS. RFC 8310, Internet Engineering
Task Force, March 2018.

[23] DNSCrypt project. DNSCrypt version 2 protocol specification.
[Online], https://dnscrypt.info/protocol/, [Accessed: Oct 2020].

[24] DNSCrypt project. Frequently Asked Questions. [Online], https:
//dnscrypt.info/protocol/faq, [Accessed: Oct 2020].

[25] E. Rescorla and K. Oku and N. Sullivan and C.A. Wood. TLS En-
crypted Client Hello. IETF Draft, https://tools.ietf.org/html/draft-
ietf-tls-esni-07, June 2020.

[26] E. Rescorla and K. Oku and N. Sullivan and C.A. Wood. Encrypted
Server Name Indication for TLS 1.3. IETF Draft, https://tools.ietf.
org/html/draft-ietf-tls-esni-06, March 2020.

[27] efficient iP. Why You Shouldn’t Rush Into DoH. Blogpost, https:
//www.efficientip.com/dont-rush-into-doh/, Sep 2019 [Accessed:
Oct 2020].

[28] S. Gatlan. Microsoft adds Windows 10 DNS over
HTTPS settings section. BleepingComputer Blog,
https://www.bleepingcomputer.com/news/security/microsoft-
adds-windows-10-dns-over-https-settings-section/, Aug 2020,
[Accessed: Oct 2020].

[29] D. Gillmor. Empirical DNS Padding Policy. Online, https:
//dns.cmrg.net/ndss2017-dprive-empirical-DNS-traffic-size.pdf,
Mar 2017 [Accessed: Oct 2020].

[30] Google. HTTPS encrpytion on the web. Google Transparency Re-
port, https://transparencyreport.google.com/https/overview?hl=en,
[Accessed: Oct 2020].

[31] M. Gunes and B. Charyyev. Iot event classification based on
network traffic. 02 2020.

[32] J. Hayes and G. Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In USENIX Security, pages 1–
17, 2016.

[33] S. Hazarika. BraveDNS is an open-source DNS-over-HTTPS
client, firewall, and adblocker for Android. XDA-developers post,
https://www.xda-developers.com/bravedns-open-source-dns-over-
https-client-firewall-adblocker-android/, Aug 2020 [Accessed: Oct
2020].

[34] I. Herrera. How Venezuela’s vice grip on the internet
leaves citizens in the dark during crises. NBC News,
https://www.nbcnews.com/tech/tech-news/how-venezuela-s-
vice-grip-internet-leaves-citizens-dark-during-n1006146, May
2019 [Accessed: Oct 2020].

[35] D. Herrmann, C. Banse, and H. Federrath. Behavior-Based Track-
ing: Exploiting Characteristic Patterns in DNS Traffic. 2013.

[36] N. P. Hoang, A. Akhavan Niaki, N. Borisov, P. Gill, and M. Poly-
chronakis. Assessing the privacy benefits of domain name en-
cryption. In Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, ASIA CCS ’20, page
290–304, New York, NY, USA, 2020. Association for Computing
Machinery.

[37] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH).
RFC 8484, Internet Engineering Task Force, 2018.

[38] R. Houser, Z. Li, C. Cotton, and H. Wang. An Investigation on
Information Leakage of DNS over TLS. In ACM CoNEXT, page
123–137, 2019.

[39] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoff-
man. Specification for DNS over Transport Layer Security (TLS).
RFC 7858, Internet Engineering Task Force, May 2016.

[40] Q. Huang, D. Chang, and Z. Li. A Comprehensive Study of DNS-
over-HTTPS Downgrade Attack. In 10th USENIX FOCI. USENIX
Association, Aug. 2020.

[41] IOVisor. eXpress Data Path. Online, https://www.iovisor.org/
technology/xdp, [Accessed: Oct 2020].

[42] ISC. BIND 9. Online, https://www.isc.org/bind/, [Accessed: Oct
2020].

[43] ISPreview. Firefox Says – NO DNS Over HTTPS (DoH) by
Default for UK. Blog post, https://www.ispreview.co.uk/index.
php/2019/09/firefox-says-no-dns-over-https-doh-by-default-for-
uk.html, Sep 2019.

https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/open-sourcing-ja3-92c9e53c3c41
https://engineering.salesforce.com/open-sourcing-ja3-92c9e53c3c41
https://bit.ly/2SyUVR7
https://www.journalism.org/2012/11/28/role-social-media-arab-uprisings/
https://www.journalism.org/2012/11/28/role-social-media-arab-uprisings/
https://www.fastcompany.com/90421616/heres-how-to-stop-comcast-verizon-and-other-isps-from-spying-on-you
https://www.fastcompany.com/90421616/heres-how-to-stop-comcast-verizon-and-other-isps-from-spying-on-you
https://www.fastcompany.com/90421616/heres-how-to-stop-comcast-verizon-and-other-isps-from-spying-on-you
https://www.zdnet.com/article/google-to-run-dns-over-https-doh-experiment-in-chrome/
https://www.zdnet.com/article/google-to-run-dns-over-https-doh-experiment-in-chrome/
https://www.bleepingcomputer.com/news/software/mozilla-is-testing-dns-over-https-support-in-firefox/
https://www.bleepingcomputer.com/news/software/mozilla-is-testing-dns-over-https-support-in-firefox/
https://cleanbrowsing.org/articles/
https://cleanbrowsing.org/articles/
https://www.cloudflare.com/learning/dns/dns-cache-poisoning/
https://www.cloudflare.com/learning/dns/dns-cache-poisoning/
https://corporate.comcast.com/press/releases/comcast-xfinity-internet-firefox-trusted-recursive-resolver-program-customer-privacy
https://corporate.comcast.com/press/releases/comcast-xfinity-internet-firefox-trusted-recursive-resolver-program-customer-privacy
https://corporate.comcast.com/press/releases/comcast-xfinity-internet-firefox-trusted-recursive-resolver-program-customer-privacy
https://github.com/cslev/doh_docker
https://github.com/cslev/doh_docker
https://hub.docker.com/r/cslev/doh_docker
https://hub.docker.com/r/cslev/doh_docker
https://github.com/cslev/doh_ml
https://github.com/curl/curl/wiki/DNS-over-HTTPS
https://www.knot-dns.cz
https://dnscrypt.info/protocol/
https://dnscrypt.info/protocol/faq
https://dnscrypt.info/protocol/faq
https://tools.ietf.org/html/draft-ietf-tls-esni-07
https://tools.ietf.org/html/draft-ietf-tls-esni-07
https://tools.ietf.org/html/draft-ietf-tls-esni-06
https://tools.ietf.org/html/draft-ietf-tls-esni-06
https://www.efficientip.com/dont-rush-into-doh/
https://www.efficientip.com/dont-rush-into-doh/
https://www.bleepingcomputer.com/news/security/microsoft-adds-windows-10-dns-over-https-settings-section/
https://www.bleepingcomputer.com/news/security/microsoft-adds-windows-10-dns-over-https-settings-section/
https://dns.cmrg.net/ndss2017-dprive-empirical-DNS-traffic-size.pdf
https://dns.cmrg.net/ndss2017-dprive-empirical-DNS-traffic-size.pdf
https://transparencyreport.google.com/https/overview?hl=en
https://www.xda-developers.com/bravedns-open-source-dns-over-https-client-firewall-adblocker-android/
https://www.xda-developers.com/bravedns-open-source-dns-over-https-client-firewall-adblocker-android/
https://www.nbcnews.com/tech/tech-news/how-venezuela-s-vice-grip-internet-leaves-citizens-dark-during-n1006146
https://www.nbcnews.com/tech/tech-news/how-venezuela-s-vice-grip-internet-leaves-citizens-dark-during-n1006146
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://www.isc.org/bind/
https://www.ispreview.co.uk/index.php/2019/09/firefox-says-no-dns-over-https-doh-by-default-for-uk.html
https://www.ispreview.co.uk/index.php/2019/09/firefox-says-no-dns-over-https-doh-by-default-for-uk.html
https://www.ispreview.co.uk/index.php/2019/09/firefox-says-no-dns-over-https-doh-by-default-for-uk.html

[44] L. Jill. Data Plane Development Kit (DPDK) Further Accelerates
Packet Processing Workloads, Issues Most Robust Platform Re-
lease to Date. DPDK announcement, https://www.dpdk.org/news/
press/, Jun 2018 [Accessed: Oct 2020].

[45] T. Kent. TLS Fingerprinting: Rethinking Encrypted
Traffic Analysis Strategies . Security Boulevard blog,
https://securityboulevard.com/2019/07/tls-fingerprinting-
rethinking-encrypted-traffic-analysis-strategies/, Jul 2019
[Accessed: Oct 2020].

[46] D. W. Kim and J. Zhang. You Are How You Query: Deriving
Behavioral Fingerprints from DNS Traffic. In B. Thuraisingham,
X. Wang, and V. Yegneswaran, editors, Security and Privacy in
Communication Networks, pages 348–366, Cham, 2015. Springer
International Publishing.

[47] H. Klein. Improved Home Network Privacy With NextDNS.
Blogpost, https://helgeklein.com/blog/2020/05/improved-home-
network-privacy-with-nextdns/, May 2020 [Accessed: Oct 2020].

[48] J. Livingood, A. Mayrhofer, and B. Overeinder. DPRIVE Phase 2
Requirements . Internet Draft, https://tools.ietf.org/html/draft-ietf-
dprive-phase2-requirements-01, Jun 2020.

[49] S. Lundberg. SHAP. [Online], https://shap.readthedocs.io/en/
latest/, 2018 [Accessed: Oct 2020].

[50] M. Erwin. Trusted Recursive Resolvers – Protecting
Your Privacy with Policy and Technology. Blog post,
https://blog.mozilla.org/netpolicy/2019/12/09/trusted-recursive-
resolvers-protecting-your-privacy-with-policy-technology/, 2019.

[51] A. Mayrhofer. Padding Policies for Extension Mechanisms for
DNS (EDNS(0)). RFC 8467, Internet Engineering Task Force,
Experimental, Oct. 2018.

[52] P. Mockapetris. Domain names: Concepts and facilities. RFC 0882,
Internet Engineering Task Force, November 1983.

[53] S. O’Dea. Consumer Internet data traffic worldwide by
application category from 2016 to 2022. Statista Sur-
vey, https://www.statista.com/statistics/454951/mobile-data-traffic-
worldwide-by-application-category/, Feb 2020 [Accessed: Oct
2020].

[54] L. O’Donnell. Microsoft Adds DNS-Over-HTTPS Support for
Windows 10 Insiders. ThreatPost Blog, https://threatpost.com/
microsoft-dns-over-https-windows-10/155746/, May 2020, [Ac-
cessed: Oct 2020].

[55] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp,
K. Wehrle, and T. Engel. Website fingerprinting at internet scale.
In NDSS Symposium, pages 1–15, 2016.

[56] S. Patil and N. Borisov. What Can You Learn from an IP? In
ANRW, page 45–51, 2019.

[57] T. Pauly. Enable encrypted dns. WWDC 2020 video, https:
//developer.apple.com/videos/play/wwdc2020/10047, 2020 [Ac-
cessed: Oct 2020].

[58] R. Prakash. Build trust through better privacy. WWDC 2020 video
(11:57), https://developer.apple.com/videos/play/wwdc2020/10676,
2020 [Accessed: Oct 2020].

[59] Quad9. DoH with Quad9 DNS Servers. Blog, https://www.quad9.
net/doh-quad9-dns-servers/, 2019 [Accessed: Feb 2021].

[60] R. Roxana and H. Michael. Consolidation in the DNS resolver
market – howmuch, how fast, how dangerous? Journal of Cyber
Policy, pages 46–64, 02 2020.

[61] R. Schuster, V. Shmatikov, and E. Tromer. Beauty and the Burst:
Remote Identification of Encrypted Video Streams. In USENIX
Security, pages 1357–1374, Vancouver, BC, Aug. 2017. USENIX
Association.

[62] scikit learn. Machine Learning in Python. [Online], https://scikit-
learn.org/stable/, [Accessed: Oct 2020].

[63] scikit-learn developers. sklearn.ensemble.RandomForestClassifier.
Documentation, https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html, 2020 [Accessed:
Feb 2021].

[64] Selena Deckelmann. Firefox continues push to bring DNS
over HTTPS by default for US users. Mozilla Blog,
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-
to-bring-dns-over-https-by-default-for-us-users/, Feb 2020.

[65] S. Siby, M. Juárez, C. Dı́az, N. Vallina-Rodriguez, and C. Troncoso.
Encrypted DNS -> Privacy? A Traffic Analysis Perspective. In
NDSS Symposium, 2020.

[66] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep finger-
printing: Undermining web-site fingerprinting defenses with deep
learning. In ACM CCS, pages 1928–1943, 2018.

[67] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and
M. Gurusamy. DEFT: A Distributed IoT Fingerprinting Technique.
IEEE Internet of Things Journal, 6(1):940–952, Feb 2019.

[68] The OneLab consortium. OneLab Future Internet Testbeds. Online,
https://onelab.eu/services, [Accessed: Oct 2020].

[69] D. Vekshin, K. Hynek, and T. Cejka. DoH Insight: Detecting DNS
over HTTPS by Machine Learning. In Proceedings of the 15th
International Conference on Availability, Reliability and Security,
ARES ’20, 2020.

[70] T. Wang and I. Goldberg. On realistically attacking torwith website
fingerprinting. In PETS, pages 21–36, 2016.

[71] S. Weiler and D. Blacka. Clarifications and Implementation Notes
for DNS Security (DNSSEC). RFC 6840, Internet Engineering
Task Force, February 2013.

[72] C. V. Wright, S. E. Coull, and F. Monrose. Traffic Morphing: An
Efficient Defense Against Statistical Traffic Analysis. In NDSS,
2017.

[73] Z. Xiong and N. Zilberman. Do switches dream of machine
learning? toward in-network classification. In Proceedings of the
18th ACM Workshop on Hot Topics in Networks, HotNets ’19, page
25–33, New York, NY, USA, 2019. Association for Computing
Machinery.

https://www.dpdk.org/news/press/
https://www.dpdk.org/news/press/
https://securityboulevard.com/2019/07/tls-fingerprinting-rethinking-encrypted-traffic-analysis-strategies/
https://securityboulevard.com/2019/07/tls-fingerprinting-rethinking-encrypted-traffic-analysis-strategies/
https://helgeklein.com/blog/2020/05/improved-home-network-privacy-with-nextdns/
https://helgeklein.com/blog/2020/05/improved-home-network-privacy-with-nextdns/
https://tools.ietf.org/html/draft-ietf-dprive-phase2-requirements-01
https://tools.ietf.org/html/draft-ietf-dprive-phase2-requirements-01
https://shap.readthedocs.io/en/latest/
https://shap.readthedocs.io/en/latest/
https://blog.mozilla.org/netpolicy/2019/12/09/trusted-recursive-resolvers-protecting-your-privacy-with-policy-technology/
https://blog.mozilla.org/netpolicy/2019/12/09/trusted-recursive-resolvers-protecting-your-privacy-with-policy-technology/
https://www.statista.com/statistics/454951/mobile-data-traffic-worldwide-by-application-category/
https://www.statista.com/statistics/454951/mobile-data-traffic-worldwide-by-application-category/
https://threatpost.com/microsoft-dns-over-https-windows-10/155746/
https://threatpost.com/microsoft-dns-over-https-windows-10/155746/
https://developer.apple.com/videos/play/wwdc2020/10047
https://developer.apple.com/videos/play/wwdc2020/10047
https://developer.apple.com/videos/play/wwdc2020/10676
https://www.quad9.net/doh-quad9-dns-servers/
https://www.quad9.net/doh-quad9-dns-servers/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://onelab.eu/services

Appendix A.
Further details on datasets, features and eval-
uations

A.1. Most popular resolvers

We pick the most prominent resolvers according
to their penetration; e.g., Cloudflare and Google are
defaults for Firefox and Google Chrome, respectively,
providing DoH services since the beginning. Besides,
Cleanbrowsing and Quad9 are further well-known
resolvers providing reliable DoH services since 2018 and
2019, respectively [13], [59]. We also observed that the
most number of successful DNS resolutions and website
visits were achieved when using these four resolvers. In
particular, on average, the dataset corresponding to each
of these resolvers has ∼2M packets, while other resolvers
result in around 1.2M packets ±300k.

A.2. Mislabeled Web Packets

We identify that not all HTTPS packets destined to
a DoH resolver is labeled as DoH by Wireshark. For
instance, before sending the actual encrypted DNS query
(labeled as DoH), there is always a preceding HTTPS
POST message labeled as Web (cf. Fig. A.1 in the Ap-
pendix). Therefore, whenever a packet within a flow is
labeled as DoH, we relabel every packet of the same flow
as DoH.

Figure A.1: Mislabeled HTTPS POST queries preceding
the DoH requests sent to Cloudflare’s DoH resolver.

A.3. Model Hyper-parameters

All our models are based on the Random Forest
classifier. The number of trees is set to 300. For all
other parameters, we used the default values set by
the Python scikit-learn library. The most relevant
hyper-parameters are listed in Table A.1, while the re-
maining default settings can be found in [63].

Parameter Value
#trees 300

criterion (quality of the split) entropy
max depth not defined

min samples to split a node 2
min samples to be at a leaf 1

max leaf nodes unlimited

TABLE A.1: Hyper-parameters of our models.

A.4. k-fold Cross-Validation

We carry out k-fold cross-validation for each of our
models in a closed-world setting. Note, cross-validation is
not meaningful in the open-world settings, since training
and testing need to be carried out on different datasets

(§4.4). We choose k = 5 for the evaluations. In scenario
S1 (§5.1), we find the average F1-scores (with standard
deviations) for M1−CF, M1−G, M1−CB, and M1−Q9 are
0.9967 (0.00013), 0.9882 (0.00085), 0.9994 (0.00005),
and 0.9954 (0.00120).

In scenario S2 (§5.2), k-fold cross-validation of the
model M2b resulted in an average F1-score of 0.9897
with standard deviation 0.00432.

Our final modelM3 in scenario S3 (§5.3) has an aver-
age F1-score of 0.9833 with standard deviation 0.01322.

A.5. Feature preferences

In Fig. A.2, the SHAP values of the features of our
model M2a can be seen (cf. §5.2). After adjusting the

0.0 0.04 0.075 0.1 0.125 0.15

prev_pkt_len
prev_time_lag

pkt_len
time_lag

mean SHAP values

Figure A.2: The average impact of the features on the
output magnitude of M2a.

dataset used for training (cf. §5.2, the SHAP values of
our final model M3 is depicted in Fig. A.3.

0.0 0.04 0.075 0.1 0.1250.15

pkt_len
prev_pkt_len
prev_time_lag

time_lag

mean SHAP values

Figure A.3: The average impact of the features on the
output magnitude of M3.

A.6. Feature value statistics for model M2a

Here, we show that after analyzing the false positives
and false negatives, we identified that most of them belong
to the subset of Web requests and DoH responses as
having feature values more similar than the other two
subsets, i.e., DoH requests and Web responses. Consider
Fig. A.4, where the statistics of the four features are
shown for DoH and Web requests and responses. We see
that for the pkt_len and prev_pkt_len features, the
statistical values of DoH responses and Web requests are
much closer to each other than any other two relevant
types, such as DoH requests compared to Web requests.
In case of the feature time_lag (and the more impor-
tant prev_time_lag feature), on the other hand, we
can observe DoH requests and Web requests are much
easier to differentiate than the corresponding responses.
Therefore, as stated in §5.2, we removed the responses
from the dataset when training model M2b (§5.2), our
final modelM3 (§5.3), as well as for the rest of our study,
e.g., localized models and the countering part in §5.4 and
§6, respectively. Table A.2 provides a brief summary about

how the models evolved and which packet direction we
considered in the datasets for training and testing.

A.7. Detailed Accuracy Metrics

Here, we summarize all performance metrics of each
models in all scenarios (cf. §5) mentioned in Sec. 4.4.
First, we show the performance of the naı̈ve sub-models,
M2b, and M3 in scenario S1 (§5.1), S2 (§5.2), and S3
(Sec. 5.3), respectively, in the closed-world setting (see
Table A.3). Note, in case of S3, the resolvers used for
training are Cloudflare, Google, Cleanbrowsing,
Quad9, OpenDNS, doh.li, jcdns, PowerDNS, and
CZNIC.

Subsequently, we present separately the results for the
same models in the open-world setting, i.e., the results
for the naı̈ve sub-models, M2b, and M3 are shown in
Table A.4, Table A.5, and Table A.6, respectively

The performance of M2b in the open-world setting is
detailed in Table A.5. Each row corresponds to a DoH
resolver not used for training.

The accuracy metrics ofM3 in the open-world setting
is detailed in Table A.6. Similar to Table A.5, each row
represents the accuracy metrics for each different DoH
resolver not used for training. The ratios of the DoH and
Web packets in the corresponding trace are also shown.

Lastly, Table A.7 summarizes the accuracy metrics of
the localized models (§5.4.1) trained at different locations
and environments and evaluated in a closed-world setting.

A.8. DoH resolver and Web Service Behind the
Same IP address

Next, we briefly investigate whether our model’s fea-
tures help to distinguish DoH from Web when both the
DoH resolver and the visited domain reside behind the
same IP address. To this end, we used our final modelM3

and tested it (in an open-world setting) on data where the
resolver used is LibreDNS (https://doh.libredns.gr) and the
visited domain is its website (https://doh.libredns.gr); note,
both websites are hosted behind 116.202.176.26 at
the time and location of writing). Our experiment con-
firms that even though the time_lag related features
are more similar, the most preferred pkt_len feature is
still significantly different. As a result, M3 successfully
identifies LibreDNS DoH from Web traffic with a high
F1-score of 0.9895, with recall and precision of 0.9793
and 1.0, respectively.

A.9. Recall of the Models at Different FPRs

Here, we give a more comprehensive overview of the
recall of the localized models M2b (cf. Fig. A.5a) and
the final modelM3 in different settings (cf. Fig. A.5b) as
discussed in §5.4.

A.10. Recall of Padded Models at Different FPRs

A give brief summary of the recall values of the
padded model Mf

PT(5) for the best performing resolvers
in the open-world setting is shown in Fig. A.6.

A.11. Countering the model with padded traces

We evaluate how a model trained on the original un-
padded data performs on a padded data. For this purpose,
we consider our final identification modelM3. For testing,
we consider most of the traces used explicitly in the open-
world setting in scenario S3 (§5.3). We apply PT(2), i.e.,
random padding, (cf. §6.2) on all traces to be tested. The
F1-scores of our model is presented in Fig. A.7; mind the
scale of the y axis. We observe that modifying the packet
length of the DoH traffic by a simple padding already
counters the identification model trained on non-padded
data; the model’s performance barely reaches an average
F1-score of 0.09811.

A.12. DoH Domain Resolution by Using Different
Cloudflare IP addresses

The below simple script (relying on the command-
line utility cURL) can be used to show that any
Cloudflare IP within the 104.16/16 network prefix
replies to a DoH query having the URI of https://
mozilla.cloudflare-dns.com/dns-query.
The --resolve command line argument requires
the following pattern: domain:port:exact IP to
use. Output of the cURL commands are suppressed, and
if Status:0 is received, the lookup was successful.
This is checked via grep.

resolved=0
unresolved=0
for i in {1..255}
do
for j in {1..255}
do

echo -e "Testing IP 104.16.${i}.${j}..."
curl -H ’accept: application/dns-json’ --resolve

mozilla.cloudflare-dns.com:443:104.16.${i}.${j} ’
https://mozilla.cloudflare-dns.com/dns-query?name=
google.com&type=A’ 2>&1 |grep "\"Status\":0" -q
if [$? -eq 0]
then
resolved=‘expr $resolved + 1‘
echo "[SUCCESS]"

else
unresolved=‘expr $unresolved + 1‘
echo "[FAIL]"

fi
done

done
echo "Resolved: ${resolved}"
echo "Unresolved: ${unresolved}"

----------------- OUTPUT ------------------
...
Testing IP 104.16.255.251...[SUCCESS]
Testing IP 104.16.255.252...[SUCCESS]
Testing IP 104.16.255.253...[SUCCESS]
Testing IP 104.16.255.254...[SUCCESS]
Testing IP 104.16.255.255...[SUCCESS]
Resolved: 65536
Unresolved: 0

Listing 1: Simple BASH script to issue DoH queries (for
the A record(s) of google.com) to all Cloudflare IPs
within the 104.16/16 network prefix

A.13. Location-specific details

Locx86A in South America is at the University of Camp-
inas, Campinas, Brazil. We would like to thank to Fabricio
Rodriguez and Christian Esteve Rothenberg for providing

DoH req. Web req. DoH resp. Web resp.
Different types of packets

0

1000

2000

3000

4000

5000

6000

7000

Si
ze

 [B
]

(a) Statistics of pkt_len

DoH req. Web req. DoH resp. Web resp.
Different types of packets

0

1000

2000

3000

4000

5000

6000

7000

Si
ze

 [B
]

(b) Statistics of prev_pkt_len

DoH req. Web req. DoH resp. Web resp.
Different types of packets

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ti
m

e
la

g
[s

]

(c) Statistics of time_lag

DoH req. Web req. DoH resp. Web resp.
Different types of packets

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Ti
m

e
la

g
[s

]

(d) Statistics of prev_time_lag

Figure A.4: Box plot for all features, for DoH and Web requests and responses.

Model Resolvers used for training Traffic direction
M1−CF Cloudflare (CF) bi-directional traffic
M1−G Google (G) bi-directional traffic
M1−CB Cleanbrowsing (CB) bi-directional traffic
M1−Q9 (Quad9) bi-directional traffic
M2a CF, G, CB, Quad9 bi-directional traffic
M2b CF, G, CB, Quad9 requests only
M3 CF, G, CB, Quad9, Comcast, OpenDNS, doh.li requests only

TABLE A.2: All models with the corresponding training datasets. Model M3 is our final model.

Scen. Model Accuracy Precision F1-score Recall (TPR) Sensitivity (TNR) FPR FNR DoH:Web

S1
M1−CF 0.993545 0.990489 0.994004 0.997545 0.988918 0.011082 0.002455 56%:43%
M1−G 0.979515 0.983556 0.984114 0.984673 0.970170 0.029830 0.015327 48%:51%
M1−CB 0.995418 0.994467 0.995726 0.996988 0.993609 0.006391 0.003012 58%:41%
M1−Q9 0.983817 0.982893 0.983997 0.985103 0.982504 0.017496 0.014897 60%:40%

S2 M2a 0.974066 0.974756 0.977001 0.979257 0.967392 0.032608 0.020743 54%:46%
M2b 0.988836 0.993109 0.991096 0.989091 0.988404 0.011596 0.010909 54%:46%

S3 M3 0.988966 0.993551 0.990764 0.987991 0.990422 0.009578 0.012009 54%:46%

TABLE A.3: All accuracy metrics (with the ratios of the DoH and the Web packets in the corresponding traces) in
the closed-world setting of the naı̈ve sub-models, M2b, and M3 in scenario S1 (§5.1), S2 (§5.2), and S3 (Sec. 5.3),
respectively.

Sub-model Tested on Accuracy Precision F1-score Recall (TPR) Sensitivity (TNR) FPR FNR

M1−CF

Google 0.354911 0.416642 0.008831 0.004463 0.988699 0.011301 0.995537
Cleanbrowsing 0.462329 0.258708 0.006334 0.003206 0.989453 0.010547 0.996794
Quad9 0.493292 0.431161 0.017003 0.008673 0.988312 0.011688 0.991327

M1−G

Cloudflare 0.508443 0.812389 0.190418 0.107848 0.971227 0.028773 0.892152
Cleanbrowsing 0.496063 0.753890 0.152500 0.783668 0.968205 0.031795 0.915170
Quad9 0.816752 0.971182 0.783668 0.656846 0.980091 0.019909 0.343154

M1−CB

Cloudflare 0.462416 0.330897 0.005680 0.002864 0.993309 0.006691 0.997136
Google 0.358208 0.652218 0.014128 0.007141 0.993113 0.006887 0.997136
Quad9 0.544040 0.938696 0.188037 0.104484 0.993030 0.006970 0.895516

M1−Q9

Cloudflare 0.457154 0.162250 0.006009 0.003061 0.981740 0.018260 0.996939
Google 0.542815 0.966403 0.458405 0.300464 0.981109 0.018891 0.699536
Cleanbrowsing 0.507649 0.850443 0.171929 0.095631 0.980692 0.019308 0.904369

TABLE A.4: All accuracy metrics of the naı̈ve sub-models in Sec. 5.1 in the open-world setting. The sub-models CF,
G, CB, and Q9 are trained on Cloudflare, Google, Cleanbrowsing, and Quad9, respectively, and are cross-evaluated
(Column “Tested on”).

Tested on Accuracy Precision F1-score Recall (TPR) Sensitivity (TNR) FPR FNR DoH:Web
PowerDNS 0.966496 0.994984 0.972640 0.951278 0.991972 0.008028 0.048722 53%:47%
Doh.li 0.585120 0.016971 0.000076 0.000038 0.998433 0.001567 0.999962 41%:59%
Comcast 0.943168 0.994552 0.945801 0.901607 0.993964 0.006036 0.098393 46%:54%
DNS.SB 0.988495 0.996030 0.990890 0.985802 0.993173 0.006827 0.014198 60%:40%
Flatuslifir 0.959292 0.996679 0.966000 0.937153 0.994969 0.005031 0.062847 65%:35%
LibreDNS 0.966144 0.996400 0.971795 0.948375 0.994527 0.005473 0.062847 60%:40%
OpenDNS 0.454426 0.913205 0.180734 0.100291 0.985700 0.014300 0.899709 58%:42%
CZNIC 0.958253 0.995945 0.963274 0.932677 0.9946030 0.005397 0.067323 27%:73%
42L 0.965119 0.996227 0.971909 0.948751 0.993721 0.006279 0.051249 50%:50%
ContainerPI 0.971233 0.995338 0.975969 0.957340 0.992981 0.007019 0.042660 56%:44%

TABLE A.5: All accuracy metrics (with the ratios of the DoH and the Web packets in the corresponding traces) of
model M2b of scenario S2 (§5.2) in the open-world setting OW1.

Tested on Accuracy Precision F1-score Recall (TPR) Sensitivity (TNR) FPR FNR DoH:Web
Adguard 0.960474 0.997292 0.969459 0.943138 0.994913 0.005087 0.056862 65%:35%
DNS.SB 0.984806 0.996218 0.987931 0.979781 0.993537 0.006463 0.020219 60%:40%
42L 0.970015 0.996775 0.975934 0.955947 0.994596 0.005404 0.044053 50%:50%
ContainerPI 0.977204 0.995659 0.981047 0.966858 0.993401 0.006599 0.033142 56%:44%
Flatuslifir 0.967963 0.996910 0.973430 0.951030 0.995250 0.004750 0.048970 65%:35%
LibreDNS 0.968576 0.996586 0.973869 0.952165 0.994790 0.005210 0.047835 60%:40%
AA 0.976634 0.996840 0.981206 0.966054 0.994755 0.005245 0.033946 60%:40%
BlahDNS 0.960832 0.996955 0.969460 0.943442 0.994432 0.005568 0.056558 60%:40%
DigitalG 0.968555 0.996763 0.973744 0.951765 0.995111 0.004889 0.048235 58%:42%
Dnslify 0.982284 0.992390 0.985627 0.978955 0.987726 0.012274 0.021045 60%:40%
FFmuc 0.973949 0.996749 0.977952 0.959851 0.995266 0.004734 0.040149 58%:42%
HE.NET 0.981434 0.996985 0.985226 0.973741 0.994860 0.005140 0.026259 62%:38%
Pi-DNS 0.947179 0.997111 0.957081 0.920140 0.995260 0.004740 0.079860 54%:47%
Tiarap 0.973956 0.995697 0.980986 0.966703 0.990482 0.009518 0.033297 65%:35%
TWNIC 0.978066 0.996416 0.981861 0.967725 0.994477 0.005523 0.032275 57%:43%

TABLE A.6: All accuracy metrics (with the ratios of the DoH and the Web packets in the corresponding traces) of
model M3 of scenario S3 (§5.3) in the open-world setting OW1.

Tested on Accuracy Precision F1-score Recall (TPR) Sensitivity (TNR) FPR FNR

Locx86A 0.989162 0.993570 0.991514 0.989467 0.988621 0.011379 0.010533
Locx86B1 0.990984 0.995855 0.993048 0.990257 0.992336 0.007664 0.009743
Locx86B2 0.991154 0.995790 0.993095 0.990414 0.992482 0.007518 0.009586
LocarmB1 0.988902 0.995458 0.991409 0.987393 0.991686 0.008314 0.012607
Locx86C 0.988836 0.993109 0.991096 0.989091 0.988404 0.011596 0.010909

TABLE A.7: All accuracy metrics of the localized model M2b trained at different locations and environments in the
closed-world setting. Accordingly, the results for LocC is the same as row M2b in Table A.3.

10−410−310−210−1
0.9

0.92

0.94

0.96

0.98

1

False Positive Rate (FPR)

R
ec

al
l(

T
PR

)

Locx86A Locx86C

Locx86B1 Locx86B2

LocarmB1

(a) Localized M2b models.

10−410−310−210−1
0.75

0.8

0.85

0.9

0.95

1

False Positive Rate (FPR)

R
ec

al
l(

T
PR

)

MLocx86C
3 MLocx86C

3 (OW1)

MLocx86A
3 MLocx86B1

3

MLocx86B2
3 MLocarmB1

3

(b) Final model M3.

Figure A.5: Complete rundown of the recall values of the
final and the localized models for considerably low FPR
values.

10−410−310−210−1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

False Positive Rate (FPR)

R
ec

al
l(

T
PR

)

LibreDNS
A42l
PowerDNS
ContainerPi
DNSSB

Figure A.6: Complete rundown of the recall values of
model Mf

PT(5) for considerably low FPR values.

access to their facility. Locx86B1 and Locx86B2 are two anchors
of Cloudlabs; while the former is at the University of Utah
(western side), the latter is at the University of Wisconsin
(eastern side). LocarmB1 is the publicly available ARM64-
based facility of Cloudlabs at the University of Utah.
Locx86C is at the National University of Singapore, where
the authors carried out their research.

D
N

S.
SB

Fl
at

us
lifi

r
L

ib
re

D
N

S
A

42
l

C
Z

N
IC

A
&

A
B

la
hD

N
S

D
ig

ita
lG

D
ns

lif
y

FF
m

uc
H

E
.N

E
T

Pi
D

N
S

Ti
ar

ap

T
W

N
IC

0
0.05
0.1

0.15
0.2

DoH resolvers

F
1
-s

co
re Randomly padded

Figure A.7: F1-score of M3 for the resolvers from the
open-world setting OW1 in S3, when each DoH packet
is padded using PT(2).

A
le

kb
er

gE
S

A
le

kb
er

gN
L

A
le

kb
er

gS
E

A
lib

ab
a

A
pp

lie
dP

riv

B
ra

ve
D

N
S

cs
Fa

m
ily

cs
Pr

iv
at

e

cs
Pr

ot
ec

te
d

D
N

SF
or

ge

Fa
el

ix

0
0.2
0.4
0.6
0.8
1

F
1
-s

co
re

OW1

Figure A.8: F1-score of M3 in the open-world settings,
considering eleven more DoH resolvers (published re-
cently [20].)

A.14. F1-score of M3 on recent resolvers

Very recently, some new resolvers have been published
in [20]. Therefore, we run a brief experiment with our final

model M3 on these resolvers in an open-world setting,
i.e., in OW1. We observe an average F1-score of 0.97
with standard deviation of 0.01, which renders our final
model still efficient in DoH identification (cf. Fig. A.8).

	Introduction
	Background and Related Works
	Encrypted DNS and its Penetration
	ISP's Surveillance Techniques beyond DNS
	Non-encrypted Subsequent Flow
	Server Name Indication
	IP address
	JA3(S) TLS Fingerprinting

	Related Works

	Threat Model
	Machine Learning for DoH Identification
	Data Gathering
	Choosing the Right Model
	Building the Models
	Testing the Classification Models

	Evaluation of DoH Identification Models
	Scenario S1: Naïve Sub-Models
	Scenario S2: Aggregated Model
	Scenario S3: Final Optimized Model
	Robustness of the DoH Identification Model
	Localized models based on M2b
	M3 at LocC
	M3 at different locations
	Summary

	Countering DoH Identification w/ Padding
	Padding techniques
	Evaluating padding techniques on packet size
	Evaluating padding of all features

	Applicability
	Conclusions
	References
	Appendix A: Further details on datasets, features and evaluations
	Most popular resolvers
	Mislabeled Web Packets
	Model Hyper-parameters
	k-fold Cross-Validation
	Feature preferences
	Feature value statistics for model M2a
	Detailed Accuracy Metrics
	DoH resolver and Web Service Behind the Same IP address
	Recall of the Models at Different FPRs
	Recall of Padded Models at Different FPRs
	Countering the model with padded traces
	DoH Domain Resolution by Using Different Cloudflare IP addresses
	Location-specific details
	F1-score of M3 on recent resolvers

