
Towards In-Network Time-Decaying Aggregates for
Heavy-Hitter Detection

Xin Zhe Khooi, Levente Csikor, Min Suk Kang

National University of Singapore

Dinil Mon Divakaran

Trustwave

ABSTRACT
Keeping track of heavy hitters (HH) entirely in the data plane is an
all-important aspect of many real-time monitoring tasks (e.g., load-

balancing, attack detection). Existing interval-reset-based sketch

and hash table approaches are incapable of delivering consistent and

high accuracy when operating in heterogeneous scenarios where

various applications with different purposes require the flows to be

tracked at different time scales, not to mention their dependence

on the control plane for data structure management.

We propose HashAge and SkAge, novel in-network time-decaying

algorithms for hash table- and sketch-based HH detection. We show

that our proposed algorithms offer consistent and higher detection

accuracy while operating in heterogeneous demands whilst not

requiring any data structure management from the control plane

at all.

CCS CONCEPTS
•Networks→Networkmonitoring;Networkmanagement.

KEYWORDS
network monitoring, heavy-hitter detection

ACM Reference Format:
Xin Zhe Khooi, Levente Csikor, Min Suk Kang and Dinil Mon Divakaran.

2020. Towards In-Network Time-Decaying Aggregates for Heavy-Hitter

Detection. InACM Special Interest Group on Data Communication (SIGCOMM
’20 Demos and Posters), August 10–14, 2020, Virtual Event, USA. ACM, New

York, NY, USA, 3 pages. https://doi.org/10.1145/3405837.3411402

1 INTRODUCTION
Different network applications can have heterogeneous notions of

heavy hitters (HH). Network administrators may consider top-3

heavy flows in the last 5 seconds as HH for a DDoS defense applica-

tion, while top-10 HH in every 10 seconds for a traffic engineering

application, e.g., a load balancer. Existing in-network approaches

(e.g., [7, 9, 11]), however, can satisfy only one application demand

at a time as they have the problem of interval management,— i.e.,

the flow monitoring operation is divided into static time intervals

and the data structure is reset in between. When the requirements

for HH detection vary, operators may not be able to find a single

specification to run in his network.

A naïve approach for diverse HH detection requirements is to

simply run multiple, independent instances in parallel for all the

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8048-5/20/08. . . $15.00

https://doi.org/10.1145/3405837.3411402

network applications. Or, one can also execute a single, common

heavy-hitter detection with a very short (e.g., 0.1 seconds) interval

in the data plane and implement diverse heavy-hitter detection

functions separately in the control plane. These naïve approaches,

however, create severe performance challenges in existing pro-

grammable switches, e.g., parallel data structures require much

more memory than the available (∼1.4 MB per stage [5]). Moreover,

the more instances we run the higher the overhead in the control

plane is due to frequent data structure managements (e.g., resets).

While utilizing a sliding window over the intervals seems a viable

workaround, recent proposals are marked either slow and space-

inefficient [1], or do not allow sufficiently large queries [2]. Thus, a

more attractive single, generic, in-network HH detection algorithm

is required that offers accurate detection performance for diverse

HH notions.

Here, to resolve this issue, we design and prototype (in P4 [4])

HashAge and SkAge, novel in-network time-decaying algorithms

(TDA) for hash table- and sketch-based heavy-hitter detection. Al-

though TDA is known in streaming data-processing domain, its in-

network implementation with line-rate performance is challenging

due to the limited operations available and the wrap-around prob-

lem of the high-resolution clocks in today’s programmable switches.

Overcoming these challenges, we show that our algorithms offer

consistent and, in most cases, higher detection accuracy compared

to their interval-reset counterparts when queries with arbitrary

HH demands can arrive at arbitrary times.

2 TIME-DECAYING AGGREGATES
While there have been several works on algorithms to efficiently

answer streaming queries under time decay (e.g.,[8]), no such decay

functions are readily available in programmable switches due to the

(i) lack of support for floating point operations [10]. Furthermore,

for TDAs to operate, we also need to introduce (ii) the notion of

time to the data structures.

For (i), we adapt binary right shift operations in our algorithms

(which is a good approximate to exponential decay), while to resolve

(ii), we first divide the precise timestamps of the high-resolution

clocks on the commodity programmable switches into broader

observation phases, say, 10 seconds. When a flow arrives at a switch,

we store the actual observation phase next to its counts. Whenever

the clock wraps around (i.e., the new observation phase becomes

less than the previous), we skew all consecutive observation phases

accordingly. For example, for a 30 second time span, we divide it

into 𝜙 = 3 observation phases (𝜔 = 1, 2, 3), 10 seconds each, and

we define a global observation phase as Ω. If 𝜔 becomes 1 again,

Ω will be adjusted with #wrap-arounds × 𝜙 , i.e., to 4 after the first

wrap around. Next, we give a brief overview of our hash table- and

the sketch-based algorithms.

https://doi.org/10.1145/3405837.3411402
https://doi.org/10.1145/3405837.3411402

SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA Xin Zhe Khooi, Levente Csikor, Min Suk Kang and Dinil Mon Divakaran

Algorithm 1 Eviction policy in HashAge, Input: two tuples of en-
tries 𝐹 and 𝑇 , current observation ID Ω.

1: procedure Compare(𝐹,𝑇)
2: 𝐹 .𝐶𝑛𝑡 >> (Ω − 𝐹 .Ω) # decay 𝐹

3: 𝑇 .𝐶𝑛𝑡 >> (Ω −𝑇 .Ω) # decay𝑇
4: if 𝐹 .𝐶𝑛𝑡 > 𝑇 .𝐶𝑛𝑡 then # compare counts
5: swap(F, T) # swap
6: end if
7: end procedure

HashAge (HA). We adapt HashPipe (HP, [9]) that, in a nutshell,

works as follows. The incoming packet’s flow ID is looked up in

the corresponding hash table and it is placed with count 1 in a

slot if it was empty. In case of a hit, its counter is incremented,

while in case of a miss, according to the actual stage there are

two eviction policies. In the first stage the packet’s flow ID and

counter will be placed into the hashed slot unconditionally, while
the resident entry is evicted and carried along to the next stage. In

latter stages, however, the carried flow will only evict a resident

flow if its corresponding count is greater. After the last stage, the

evicted flow ID is “smoked out” completely.

In HashAge we keep the same policy as HP has in its first stage;

but for any insertion at a latter stage, we check to what extent

the last update time of the carried flow and the colliding resident

flow are dropping behind Ω, and decay the counts appropriately

before compare or update (see Alg. 1). In particular, we right shift

the counts of flow 𝐹 and 𝑇 with the difference (Ω − 𝐹 .Ω) and
(Ω − 𝐹 .Ω), respectively (Line 2–3). After the decay, everything

works exactly the same as in HP; a flow ID will be either inserted

into an empty slot, the decayed counts will be summed up in case of

a hit, or the flow ID with the greater decayed count evicts the other

one in case of a collision (Line 4–6), whereas the whole process

starts over until the last stage.

SkAge. Here, we adapt Count-Min Sketch (CMS, [7]). In a CMS,

whenever a packet arrives, its flow ID is hashedwith 𝑒 different hash

functions, looked up in 𝑒 rows then the corresponding counters will

be incremented by one. The minimum of the 𝑒 values is taken as the

flow size. Correspondingly, within a given memory, sketches only

have false positives (as once a flow is seen, its count will be stored),

while hash tables only have false negatives (due to the eviction

policy when collision occurs).

To adapt the exponential decay in CMS, we maintain the last

observation phases alongside the counts as register pairs. Accord-

ingly, each time we update (i.e., increment) the counts of a flow

𝐹 (Line 4), we first decay its previous counts if Ω > 𝐹 .Ω (Line 3).

In contrast to CMS, SkAge chooses the count that has the smallest

observation phase Ω, as the practical count instead of the minimum

of all counts as it is the closest to the actual last update for that

particular flow.

Observe that in both algorithms, we dynamically perform time-

decay for each individual count. This means that a heavy flow will

be retained as long as its count is sufficiently large and new, at the

price of introducing a slight estimation error in the true counts due

to decaying. Otherwise, the flow will eventually disappear when

there was no or negligible number of packets for a long time.

Algorithm 2 Update in SkAge, Input: incoming packet’s data 𝐹 , set

of independent hash functionsH𝑒 .

1: procedure Update((𝐹))
2: for 𝑖 ← 1 to 𝑒 do
3: CMS[H𝑖 (𝐹)] >> (Ω − 𝐹 .Ω) # decay counts
4: CMS[H𝑖 (𝐹)] + + # Increment counts
5: end for
6: end procedure

R Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10
0

25

50

75

100

Queries within an interval

A
cc

ur
ac

y
[%

]

HA (CAIDA18) HA (IMCDC10)
HP (CAIDA18) HP (IMCDC10)

(a)Accuracy of hash tables.

R Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

Queries within an interval

SkAge(CAIDA18) SkAge(IMCDC10)
CMS (CAIDA18) CMS (IMCDC10)

(b)Accuracy of sketches.

Figure 1: The impact of QAT on the accuracy within an inter-
val (FI) in the hash table (a) and sketch-based (b) algorithms.
10 queries arrive at every second after the reset (R), each ask
for the top-300 HH while the length of the interval-reset al-
gorithm’s intervals, FI is configured to 10 seconds.

3 PRELIMINARY EVALUATIONS
Here, we evaluate the impact of the query arrival times (QAT) on the

detection accuracy by employing two different traces. We consider

10 queries arriving at every second after the reset (R), each asks for

the top-300 HHwithin the last 10 seconds. We repeat this 10-second

measurement through the chunks of [6] and [3] (also used in [9])

and the average results (with deviations) are depicted in Fig. 1.

Depending on whether the queries arrive following the ideal (i.e.,

before the reset) or worst cases (i.e., after the reset), the accuracy of

the interval-reset algorithms fluctuates significantly; the accuracy

drop in the worst case (for query 𝑄1) is as high as 40 − 45%. In

comparison, our time-decaying HashAge (SkAge) shows a steady
performance of∼85% (∼75)% irrespective to when a particular query

arrives (for all 10 queries).

This shows that when an underlying interval-reset algorithm is

well aligned with the requirements of the sole application, i.e., QAT
is at the end of each interval (FI), then it provides the most accurate

results. However, when queries arrive at arbitrary times, perfor-

mance drops are noticeable while the TDAs maintain consistent

accuracy over time as compared to their interval-reset counterparts.

ACKNOWLEDGEMENT
This research is supported by the National Research Foundation,

Prime Minister’s Office, Singapore under its Corporate Labora-

tory@University Scheme, National University of Singapore, and

Singapore Telecommunications Ltd.

Towards In-Network Time-Decaying Aggregates for Heavy-Hitter Detection SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA

REFERENCES
[1] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2016. Heavy

hitters in streams and sliding windows. In IEEE INFOCOM 2016 - The 35th Annual
IEEE International Conference on Computer Communications. 1–9.

[2] Ran Ben-Basat, Gil Einziger, Isaac Keslassy, Ariel Orda, Shay Vargaftik, and Erez

Waisbard. 2018. Memento: making sliding windows efficient for heavy hitters..

In CoNEXT, Xenofontas A. Dimitropoulos, Alberto Dainotti, Laurent Vanbever,

and Theophilus Benson (Eds.). ACM, 254–266. http://dblp.uni-trier.de/db/conf/

conext/conext2018.html#Ben-BasatEKOVW18

[3] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic

Characteristics of Data Centers in the Wild. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (IMC ’10). 267–280. https://doi.

org/10.1145/1879141.1879175

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.

2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[5] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:

Fast ProgrammableMatch-Action Processing in Hardware for SDN. In Proceedings

of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). 99–110.
https://doi.org/10.1145/2486001.2486011

[6] CAIDA. [n.d.]. The CAIDA UCSD Anonymized Internet Traces - 2018 March.

http://www.caida.org/data/passive/passive_dataset.xml [Accessed: Oct 2019].

[7] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream

Summary: The Count-Min Sketch and Its Applications. J. Algorithms 55, 1 (April
2005), 58–75. https://doi.org/10.1016/j.jalgor.2003.12.001

[8] Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and Bojian Xu.

2009. Forward Decay: A Practical Time Decay Model for Streaming Systems. In

2009 IEEE 25th International Conference on Data Engineering. 138–149. https:

//doi.org/10.1109/ICDE.2009.65

[9] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-

nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data

Plane. In Proceedings of the Symposium on SDN Research (SOSR ’17). 164–176.
https://doi.org/10.1145/3050220.3063772

[10] The P4 Architecture Working Group. [n.d.]. Portable Switch Architecture. https:

//p4.org/p4-spec/docs/PSA-v1.0.0.pdf [Accessed: Jun 2020].

[11] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Mea-

surement with OpenSketch. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (nsdi’13). 29–42. http://dl.acm.

org/citation.cfm?id=2482626.2482631

http://dblp.uni-trier.de/db/conf/conext/conext2018.html#Ben-BasatEKOVW18
http://dblp.uni-trier.de/db/conf/conext/conext2018.html#Ben-BasatEKOVW18
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/2486001.2486011
http://www.caida.org/data/passive/passive_dataset.xml
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1109/ICDE.2009.65
https://doi.org/10.1109/ICDE.2009.65
https://doi.org/10.1145/3050220.3063772
https://p4.org/p4-spec/docs/PSA-v1.0.0.pdf
https://p4.org/p4-spec/docs/PSA-v1.0.0.pdf
http://dl.acm.org/citation.cfm?id=2482626.2482631
http://dl.acm.org/citation.cfm?id=2482626.2482631

	Abstract
	1 Introduction
	2 Time-Decaying Aggregates
	3 Preliminary Evaluations
	References

