
In-Network Defense Against AR-DDoS Attacks
Xin Zhe Khooi, Levente Csikor, Min Suk Kang

National University of Singapore
Dinil Mon Divakaran

Trustwave

ABSTRACT

The prevalence of the disruptive amplified reflection DDoS (AR-
DDoS) attacks is one of the biggest concerns of all network opera-
tors today. The increasing magnitude of new attacks are rendering
existing measures (e.g., scrubbing services) inefficient. This work
demonstrates DIDA, an efficient, topology independent, in-line AR-
DDoS detection and mitigation architecture that operates entirely
in the data plane.

CCS CONCEPTS

• Security and privacy → Denial-of-service attacks; • Net-
works→ Programmable networks.
KEYWORDS

Denial-of-service attacks, reflection attacks, amplification at-
tacks, detection andmitigation, in-network, programmable switches
ACM Reference Format:

Xin Zhe Khooi, Levente Csikor, Min Suk Kang and Dinil Mon Divakaran.
2020. In-NetworkDefense Against AR-DDoSAttacks. InACMSpecial Interest
Group on Data Communication (SIGCOMM ’20 Demos and Posters), August
10–14, 2020, Virtual Event, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3405837.3411375

1 INTRODUCTION

Recent trends in cyber security have proven the increasing preva-
lence and devastating power of Amplified Reflection Distributed
Denial-of-Service (AR-DDoS) attacks [5, 12, 14]. Two years after
the infamous Mirai attack against Dyn (a major DNS provider) that
knocked down most of North Americas’s and Europe’s Internet for
hours [18], the biggest DDoS attack recorded afterwards has tar-
geted Github, the popular online source-code management service,
topping out at 1.35 Tbps [12]. Unlike Mirai, attackers did not need
any botnet; they exploited vulnerable memcached servers to launch
an AR-DDoS attack [12]. Later, a customer of a US based service
provider was attacked with the rate of 1.7 Tbps using the same
memcached attack vector [14]. Very recently, furthermore, Amazon
has been hit by the largest ever AR-DDoS attack at 2.3 Tbps exploit-
ing the CLDAP protocol (Connection-less Lightweight Directory
Access Protocol) [5].

The essence and success of AR-DDoS attacks lie in the disparity
in bandwidth consumption between the victim and the attacker
itself. In particular, an attacker exploits the connection-less nature
of UDP protocol (fundamental services rely on, e.g., DNS, NTP,
SSDP, CLDAP) with spoofed requests sent to misconfigured open

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8048-5/20/08. . . $15.00
https://doi.org/10.1145/3405837.3411375

servers1 on the Internet, which reply with amplified responses (in
size) to a victim. When the disparity is magnified across many
requests, whole networking infrastructures can be easily disrupted.

Besides the minimal effort required for an adversary to launch an
attack and the millions of vulnerable reflectors (publicly) available
on the Internet [1], detecting an attack in time is challenging as it
appears completely legitimate on the wire. While the former fall
beyond the control of a victim network operator, to detect whether a
legitimately looking traffic belongs to an attack, stateful inspection
of the ingress and egress traffic is required. Particularly, if a vast
amount of unsolicited responses are observed with no requests sent
before, we can deduce the presence of an AR-DDoS attack.

While network operators traditionally over-provision their net-
works [13] to absorb small and short-lived attacks, besides the
waste of resources in normal operation (i.e., high capital expendi-
tures), we cannot simply rely on it to deal with AR-DDoS attacks of
even hundreds of Gbps only. On the other hand, existing scrubbing
services already utilize highly scalable IDS/IPS and DPI functions
within data centers (either on-premise or on the cloud). However,
to comply them to keep track of each user connection (i.e., a request
and its corresponding response), complex network-wide tagging
mechanisms [8] are required to ensure that both ingress and egress
traffic of a given user are processed by the same VM. While some
of these issues could be alleviated by involving the network con-
troller (e.g., aggregation of switch statistics, sophisticated tagging),
keeping track of all user connections in a timely manner would
result in a huge control-plane overhead [9]. Furthermore, scrub-
bing imposes additional latency and high operational costs, not to
mention privacy concerns when using third-party cloud-scrubbers
(e.g., Akamai [2], Arbor’s NETSCOUT [15]).

Here, we showcase DIDA, a Distributed In-network Defense
Architecture [10], which leverages on commodity programmable
switches distributed at the network edges (i.e., border and access)
and provides real-time in-line detection and mitigation of all vari-
ants of AR-DDoS attacks without the need for any interaction with
the control plane or any third-party. In particular, we cast DIDA in
a realistic environment, enhance the architecture with an efficient
monitoring dashboard, and most importantly, we extend our pre-
liminary analysis [10] with multiple different use cases and QoS
measurements.

2 DIDA: ARCHITECTURE DESIGN

As a running example, we consider Fig. 1, where an ISP network is
under a DNS amplification attack. The green dashed arrows denote
the benign requests and responses to and from a public DNS re-
solver, while the red dashed arrow shows the unsolicited responses
(i.e., the attack traffic). First, we need to keep track of requests

and responses, which an efficient data structure is needed for
that fits within the constraints of programmable switches. Hence,
1A service is considered vulnerable if no basic countermeasures are implemented, e.g.,
rate-limiting the number of requests from a particular source.

https://doi.org/10.1145/3405837.3411375
https://doi.org/10.1145/3405837.3411375
https://doi.org/10.1145/3405837.3411375

SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA Xin Zhe Khooi, Levente Csikor, Min Suk Kang and Dinil Mon Divakaran

Figure 1: Illustration for the proposed defense mechanisms

against a DNS AR-DDoS attack within an ISP. Green arrows:

benign traffic; red arrow: attack traffic.

we adopted Count-Min-Sketches (CMS, [7]) due to its sub-linear
space requirements. Also, to be independent of the control plane
for data structure management tasks (e.g., resetting the counters
after a monitoring period), we extend CMS with in-network time
management [10, 11]. This is materialized by dividing the precise
timestamps of the high-resolution clocks on the commodity pro-
grammable switches into broader observation phases, i.e., 10 sec-
onds. Whenever the clock wraps around, we skew all consecutive
observation phases accordingly.

Second, for accurate in-networkAR-DDoS attack detection,
network-wide connection tracking is required. As traffic engineer-
ing and routing policies may result in different ingress and egress
points for a given network traffic, network-wide connection track-
ing must be topology independent. Thus, the Border (i.e., peering
side) and the Access (i.e., customer-facing) routers are strategi-
cally chosen to be replaced by commodity programmable switches
(cf. Fig. 1). While a Border keeps track of the responses, an Access
counts the requests of a given communication (e.g. DNS). Then,
we need an efficient communication protocol among them with
minimal overhead to detect (and mitigate) an attack. In particular,
whenever the number of responses at a Border reaches a suspi-
cious threshold (say, 20), it shares its counts with the corresponding
Access by piggybacking the production traffic, i.e., via appending
custom headers (tags & counters) to it (step 1 and 2 in Fig. 1). Note
that different border routers can have different thresholds. If there
is a significant difference w.r.t. the number of request at the Access
(step 3), an attack is confirmed, and the corresponding Border will
be notified (by an extra packet) about the attack (step 4).

Lastly, to achieve timely mitigation, the Border dynamically
manages an in-network ACL, where the source address of the
abused servers are added upon the confirmation of an attack (A
is added to the blacklist after step 4). Note, only traffic related to
the abused service (e.g., port 53 for DNS traffic) will be filtered and
dropped. This is done entirely in the data plane, i.e., the ACL is ma-
terialized by an adapted version of a cuckoo hash table [17] using
the registers of the programmable switch, hence being controller
independent. DIDA is designed to be generic, easily adaptable to
other network topologies and connection-less protocols (e.g., NTP,
SSDP, CLDAP). For more details, refer to [10].

Figure 2: Demonstration setup.

3 DEMONSTRATION

We demonstrate DIDA in our test-bed having Intel Xeon Gold 6230
CPUs, 96GB of memory, equipped with programmable software
switches (Version 1.13.0-d447b6a8) and connected back to back.

It comprises the topology depicted in Fig. 2, with hosts H1 (vic-
tim), H2, and A1 (acting as a reflection server). DIDA is prototyped
in P4 [4], and the bmv2 [16] software switches Access and Border
are running the corresponding parts of the architecture. Since bmv2
is not optimized for performance [3], we limit the maximum band-
width below the maximum performance of the switches for each
link at 500 Mbps using Linux TC to ensure consistent throughput2
across the setup.

iPerf use case. As a first use case, a persistent iperf3 session
is initiated (as a baseline of the effective bandwidth available) be-
tween H1 and H2 to fully saturate the links. Then, A1 replays a DNS
amplification trace having 7000 different resolvers as origins [6]
at maximum rate (300 Mbps) to exhaust the available link capac-
ity of H1. We show that right after the attack has started, DIDA
promptly mitigates it within seconds, while exhibiting negligible
communication overhead (caused by notifying the Border).

Web browsing use case.While the attack is still on, to verify
the correctness of our architecture, we show that our mitigation
mechanism does not affect the benign Internet browsing activity
of the victim H1.

VoD use case. As QoS and QoE also depend on other factors
than available bandwidth (e.g., latency), we show that under the
same attack, even if H1 is streaming an online video, there are no
noticeable impact either.

A brief showcase of our demo is available at https://youtu.be/
aDkMkAMw9v4.

ACKNOWLEDGEMENT

This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its Corporate Labora-
tory@University Scheme, National University of Singapore, and
Singapore Telecommunications Ltd.

REFERENCES

[1] A10 Networks. [n.d.]. DDos Weapons Intelligence Map. https://threats.
a10networks.com/ [Accessed: Jun 2020].

[2] Akamai. [n.d.]. Why Akamai Cloud Security for DDoS Protection? On-
line. https://www.akamai.com/us/en/products/security/ddos-protection-service.
jsp [Accessed: Jul 2020].

2Based on repeated measurements on our test-bed, the maximum end-to-end through-
put across the two software switches is at 500Mbps.

https://youtu.be/aDkMkAMw9v4
https://youtu.be/aDkMkAMw9v4
https://threats.a10networks.com/
https://threats.a10networks.com/
https://www.akamai.com/us/en/products/security/ddos-protection-service.jsp
https://www.akamai.com/us/en/products/security/ddos-protection-service.jsp

In-Network Defense Against AR-DDoS Attacks SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA

[3] Antonin Bas. [n.d.]. Performance of bmv2. GitHub, https://github.com/p4lang/
behavioral-model/blob/master/docs/performance.md [Accessed: Jun 2020].

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[5] Catalin Cimpanu. Jun 2020. AWS said it mitigated a 2.3 Tbps DDoS attack, the
largest ever. ZDNet, https://zd.net/3hZ06oF [Accessed: Jun 2020].

[6] Cloudflare. [n.d.]. DNS Amplification DDoS Attack. Blog post, https://bit.ly/
31dgJXN [Accessed: Jun 2020].

[7] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications. J. Algorithms 55, 1 (April
2005), 58–75. https://doi.org/10.1016/j.jalgor.2003.12.001

[8] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. 2015. Bohatei:
Flexible and Elastic DDoS Defense. In Proceedings of the 24th USENIX Conference
on Security Symposium (SEC’15). 817–832.

[9] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018. Network-
Wide Heavy Hitter Detection with Commodity Switches. In Proceedings of the
Symposium on SDN Research (SOSR ’18). Article 8, 7 pages. https://doi.org/10.
1145/3185467.3185476

[10] Xin Zhe Khooi, Levente Csikor, Dinil Mon Divakaran, and Min Suk Kang. 2020.
DIDA: Distributed In-Network Defense Architecture Against Amplified Reflec-
tion DDoS Attacks. In 2020 IEEE Conference on Network Softwarization (NetSoft).

[11] Xin Zhe Khooi, Levente Csikor, Min Suk Kang, and Dinil Mon Divakaran. 2020.
Towards In-Network Time-Decaying Aggregates for Heavy-Hitter Detection. In
ACM Special Interest Group on Data Communication (SIGCOMM’20 Demos and
Posters). https://doi.org/10.1145/3405837.3411402

[12] Lily Hay Newman. Jan 2018. GitHub Survived the Biggest DDoS Attack Ever
Recorded. Wired, https://www.wired.com/story/github-ddos-memcached/.

[13] Nick Martin. May 2014. Overprovisioning VMs may be safe, but it isn’t sound.
Blog post, https://bit.ly/37oCELJ.

[14] Carlos Morales. Mar 2018. NETSCOUT Arbor Confirms 1.7 Tbps DDoS At-
tack. NETSCOUT blog, https://www.netscout.com/blog/asert/netscout-arbor-
confirms-17-tbps-ddos-attack-terabit-attack-era [Accessed: Jun 2020].

[15] NETSCOUT. [n.d.]. Arbor Cloud DDoS Protection Services. Online. https:
//www.netscout.com/product/arbor-cloud [Accessed: Jul 2020].

[16] p4lang. [n.d.]. The BMv2 Simple Switch target. GitHub, https://github.com/
p4lang/behavioral-model/blob/master/docs/simple_switch.md [Accessed: Jun
2020].

[17] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing. J. Algorithms
51, 2 (May 2004), 122–144. https://doi.org/10.1016/j.jalgor.2003.12.002

[18] NickyWoolf. Oct 2016. DDoS attack that disrupted internet was largest of its kind
in history, experts say. The Guardian, https://www.theguardian.com/technology/
2016/oct/26/ddos-attack-dyn-mirai-botnet [Accessed: Jun 2020].

https://github.com/p4lang/behavioral-model/blob/master/docs/performance.md
https://github.com/p4lang/behavioral-model/blob/master/docs/performance.md
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://zd.net/3hZ06oF
https://bit.ly/31dgJXN
https://bit.ly/31dgJXN
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1145/3185467.3185476
https://doi.org/10.1145/3185467.3185476
https://doi.org/10.1145/3405837.3411402
https://www.wired.com/story/github-ddos-memcached/
https://bit.ly/37oCELJ
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era
https://www.netscout.com/product/arbor-cloud
https://www.netscout.com/product/arbor-cloud
https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md
https://doi.org/10.1016/j.jalgor.2003.12.002
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

	Abstract
	1 Introduction
	2 DIDA: Architecture Design
	3 Demonstration
	References

