
DIDA: Distributed In-Network Defense Architecture
Against Amplified Reflection DDoS Attacks

Xin Zhe Khooi†, Levente Csikor†, Dinil Mon Divakaran‡, Min Suk Kang†
†National University of Singapore, ‡Trustwave

Abstract—With each new DDoS attack potentially becoming
a higher intensity attack than the previous ones, current ISP
measures of over-provisioning or employing a scrubbing service
are becoming ineffective and inefficient. We argue that we need
an in-network solution (i.e., entirely in the data plane), to detect
DDoS attacks, identify the corresponding traffic and mitigate
promptly. In this paper, we propose the first distributed in-
network defense architecture, DIDA, to cope with the sophisti-
cated amplified reflection DDoS (AR-DDoS) attacks. We leverage
programmable stateful data planes and efficient data structures
and show that it is possible to keep track of per-user connections
in an automated and distributed manner without overwhelming
the network controller. Building on top of this data, DIDA can
easily detect if unsolicited attack packets are sent towards a
victim within an ISP network. Once an attack is detected, the
routers at the network edge automatically block the malicious
sources. We prototype DIDA in P4. Our preliminary experiments
show that DIDA can detect and mitigate 99.8% of amplification
attacks containing 7, 000 different sources while requiring less
than 1% of the memory of current programmable switches.

Index Terms—DDoS, amplification attack, detection, mitigation

I. INTRODUCTION

DDoS attacks are unlike other cyber threats—locally in-
stalled security appliances and software patches cannot block
and prevent such an attack altogether. To mitigate DDoS
attacks, ISPs today either over-provision their networks [1] or
employ scrubbing services (on-premise [2] or in the cloud [3]).
Since both are expensive, there is a limit to the intensity of at-
tack they can deal with before the resources get overwhelmed;
this has been demonstrated recently [4], [5].

Identifying an attack is not trivial for an ISP, especially
if it looks completely legit on the wire, as is in the case
of amplified reflection DDoS (AR-DDoS) attacks. AR-DDoS
attacks have become more common of late, with each new
attack being launched with higher volume and intensity [4],
[5]. In AR-DDoS attacks, an attacker exploits the connection-
less nature of the UDP protocol with spoofed requests sent
to misconfigured or mismanaged open servers on the Internet,
which respond with (amplified) replies to a victim.

The continuous success of these AR-DDoS attacks (e.g., [4],
[5]) can be attributed to multiple reasons: (i) persistent and

This research is supported by the National Research Foundation, Prime
Minister’s Office, Singapore under its Corporate Laboratory@University
Scheme, National University of Singapore, and Singapore Telecommunica-
tions Ltd.

easy availability of weapons (i.e., reflectors with poor man-
agement), (ii) little effort required for an attacker (even a
single powerful server is sufficient), and most importantly,
(iii) the difficulties in distinguishing the attack traffic from
benign traffic. There is hardly anything a victim ISP can do
to counter (i) and (ii) effectively. Therefore, based on today’s
solution of employing a scrubbing service, we elaborate (iii).

Since relying on a scrubbing service only enables the
incoming traffic to be scoured (at least, during the time when
the network seems to be under attack), it is difficult for the
scrubber to identify and distinguish the attack traffic from
the benign traffic. This is because a scrubber cannot track
connections, hence it will not be able to identify which of
the incoming packets (responses) to a particular host had
corresponding outgoing packets (requests) from the same host.
Even if we consider routing outgoing traffic to the scrubber to
overcome this issue, a network-wide complex tagging mecha-
nism [2] is required so that the requests and the corresponding
responses are processed by the same single VM of the scrubber
(otherwise, proper accounting of traffic cannot be achieved).

In addition to rerouting of traffic, a scrubbing service causes
additional latency and higher cost for the operator (due to
the provisioning of resources to handle the attack). Also,
there is a risk of leaking user-related private information,
when scrubbing is deployed in the cloud. In general, these
disadvantages are likely to remain for any detection and
mitigation service that is deployed outside the network.

In this work, we focus on detection and identification of
attack traffic (i.e., point (iii), leaving out the first two). Specif-
ically, we come up with a new distributed in-network solution
for detecting and mitigating AR-DDoS attacks, wherein there
is no dependence on any external or third-party appliances. We
show that by relying on recently emerged programmable and
stateful forwarding appliances (e.g., [6]–[8]) deployed at the
edges of an ISP network, a fully distributed solution can be
built entirely in the data plane (i.e., in-network), which while
being completely free of the disadvantages of a scrubbing
service mentioned above, can also provide orders of magnitude
faster detection and mitigation of AR-DDoS attacks.

However, to realize a distributed architecture in today’s
fundamentally centralized networks, we have to overcome the
following challenges:

1) At each individual switch, to keep track of the re-
quests and responses, we need an efficient algorithm that
(i) works within the constraints of the programmable
switches (e.g., limited amount of memory and instruc-978-1-7281-5684-2/20/$31.00 c©2020 IEEE

tions), and (ii) is independent of the control plane for data
structure management (e.g., resetting the counters after a
monitoring period) to achieve fast updates and queries.

2) For network-wide connection tracking, we need an ef-
ficient distributed protocol among the switches involved
that only generates negligible control message overhead.

3) In order to quickly mitigate an attack (e.g., drop the
malicious traffic), the switches at the edge of the network
should automatically maintain an Access Control List
(ACL), which is traditionally manageable only from the
centralized control plane.

To solve (1)-(3), we propose DIDA, a fully automated Dis-
tributed In-network Defense Architecture (§III). With DIDA,
we show that deploying stateful networking switches by re-
placing only the border (i.e., peering side) and (customer-
facing) access routers of an ISP network is sufficient to
accurately keep track of the responses and the requests of a
given protocol, say, DNS (§III-A). To keep track of the counts
at each individual switch, (1) we use Count-Min Sketches
(CMS, [9]) as a basis due to its sub-linear space requirements,
and we extend it with the notion of time to keep all data
structure management tasks (e.g., reset counts) entirely in
the data plane (§III-D). To resolve (2), we develop a novel
distributed protocol between the border and the access routers
that use the production traffic to share and compare the
corresponding counts to reach a consensus about a possible
attack (§III-B). Finally, to mitigate an attack in time (3), DIDA
dynamically manages an ACL at each border router, where the
IP addresses of the abused servers are automatically added,
again in a fully distributed way (§III-C).

We prototype DIDA in P4 [6], and our preliminary evalu-
ations show that it is capable to detect and identify amplified
reflection attacks with 99.8% accuracy entirely in the data
plane (§IV). Furthermore, DIDA requires significantly less
amount of control overhead than a centralized monitoring
scheme, can be deployed with a limited number of devices
capping the overall expected costs within a manageable range,
and it automatically mitigate the attacks in-network without
the need for any proprietary additional (scrubbing) device.

II. BACKGROUND AND THREAT MODEL

Stateless Data Planes: The main design concept of
software-defined networking (SDN) is to have a centralized
controller with all network intelligence to “run” and manage
the simple forwarding appliances. However, this hinders the
possibility to make simple and fast (routing) decisions based
on local states (e.g., mitigate TCP SYN floods, do NAT).

Recently, many approaches have been proposed to make the
forwarding appliances stateful, including tracking mechanisms
in OpenFlow [10], adapting finite state machines [11], build-
ing special purpose co-processing units [12], and proposing
new programming languages, compilers and target systems
as clean-slate redesigns [6]. Among all these, P4 [6] has
become the most attractive approach, since its programmable
packet parser enables arbitrarily parsing packet headers and

contents, and doing parallel match/action processing giving
more freedom for an operator to manage the network.

Traffic Monitoring: Detecting and identifying attack traffic
require keeping track of connections; this is a challenging task
in the data plane, not only due to the continuously increasing
traffic demands and line rates, but also due to the limited
features and resources available at the programmable devices
(e.g., limited instruction set and memory [6], [13]). Existing
works, thus, have focused on optimizing algorithms for space,
fast update and query time at a single switch [9], [14]. But
information gathered at a single location is insufficient for
many (security) applications with network-wide demands. Not
only AR-DDoS attacks, but others (e.g., super-spreaders, port-
scanners) can go undetected if only a minimal subset of a
malicious traffic goes through a specific point.

Though network-wide measurement is also studied exten-
sively [15], current approaches rely on the centralized con-
troller, which summarizes and verifies the data collected from
the individual switches, and makes the final decisions ac-
cordingly. Such a design imposes several challenges including
a huge control-plane overhead due to the excess amount of
communication between the control and the data plane, highly
increased (processing) latency due to distributed sampling, and
inaccurate counting (e.g., the same packet may traverse multi-
ple devices causing double counting in the control plane [16]).

In this paper, we show that by relying on a fully distributed
approach running entirely in the data plane, we can resolve
all these issues while also providing much more accurate and
faster detection and mitigation against AR-DDoS attacks.

A. Threat Model

There are many misconfigured or mismanaged publicly
available servers on the Internet which are often exploited
for DDoS attacks [17]. We consider such a threat model. For
brevity, we use a DNS-based AR-DDoS attack as a running
example, but the proposed defense mechanism can be used
against any other similar attack (e.g., those based on NTP,
SSDP, Memcached). The attacker’s aim is to saturate the
network bandwidth of the victim. The attacker resides outside
of the targeted network, and is capable of either coordinating
globally distributed hosts or using her own system (e.g., high-
end server) to send huge amounts of small legitimate but
spoofed DNS queries to multiple misconfigured DNS servers
on the Internet, which in return will send amplified DNS
replies to the victim. Therefore, the victim’s network resources
will be saturated with an enormous amount of unsolicited
DNS responses, eventually resulting in a denial-of-service. For
brevity, attack against DIDA itself is considered out of scope.

III. DIDA: DESIGN AND DEVELOPMENT

To access a public service, a client first queries a DNS server
to resolve the domain name to an IP address. Depending on
the request type (e.g., querying for the A records only or all
records by ANY query), the answer can be orders of magnitude
larger in size than the request itself (this amplification factor
is exploited in AR-DDoS attacks). Ideally, even if a large

Fig. 1: The detection and mitigation mechanisms in benign and malicious use cases.

response is spread across multiple packets (i.e., due to the
EDNS0 extension and DNSSEC, a response can be even 179-
times bigger in size than the query [18]) there is only one
response for each request and they can be identified as two
separate unidirectional flows (§III-B). By counting these flows,
we can easily detect whether unsolicited responses are hitting
the ISP network. To realize such an architecture, however,
we first need to decide which switches across the network
should count which flows, and whenever any of the switches
encounters a significant number of unsolicited responses how
should the communication between the relevant switches be
carried out without involving the control plane irrespective
of the topology. In DIDA, the way we detect an attack, we
also identify the corresponding packets; henceforth, when we
mention detection it inherently includes identification (§III-B).
A. Detection: Where to Count

Naturally, the closer we are to the victim the easier the
detection is, while the closer we are to the attack sources, the
more efficient the mitigation can be. Thus, we consider the
border (i.e., peer-facing) and the access routers (i.e., customer-
facing) within an ISP for implementing our solution. There are
multiple ways to decide which routers should be involved in
which task, with each approach striking a balance between
having less routers with more resource needs (e.g., memory),
or relying on more routers with less resource constraints.

A requesting (DNS) packet may leave an ISP network at
one border router, while the corresponding response packet
might enter the network via another border router. This means,
counting both the requests and the responses only along the
border would require all border routers to constantly share
their counts among each other. And this would introduce large
number of control messages, which is not desirable during an
attack period; besides it can also potentially result in lower
accuracy due to asynchronous updates.

On the other hand, counting everything at the access routers
does not require extra control messages to be exchanged with
others. But once an attack is detected, all border routers have
to be notified to block the malicious sources as access routers
do not know through which border router did the attack pack-
ets enter the network. Besides the extra control messages, the
redundancy would increase the overall memory footprint as the
same malicious sources (i.e., their IP addresses) will occupy
valuable slots in each border router’s ACL unnecessarily.

Therefore, to make DIDA scalable, e.g., spread the load
and minimize the memory footprint as well as the control
overhead, the responses are only counted at the border routers,
while the access routers keep track of the requests. The
algorithms at the border and access routers are given in Alg. 1
and Alg. 2, respectively, and we provide the details below.
B. Detection: How to Count

We describe our solution using an example illustrated in
Fig. 1. The figure depicts an ISP network with border and
access routers, which we assume to be programmable. The
victim (V) sends queries to the public DNS server S to resolve
20 domains (step a), for which it receives responses from
server S (step b). However, since border router Border2
finds 20 replies within a short time interval to be suspicious
(based on the value of the pre-defined threshold τ), it asks the
corresponding access router Access1 to confirm the counts.
Since Access1 has counted 20 requests, the responses are not
considered unsolicited, thus V is considered not under attack.
However, when the responses come from the abused server A1,
Access1 would not have the counts of the corresponding
requests, therefore it will instruct the corresponding border
router (Border3) to block any further traffic coming from
that malicious source (see details in §III-C).

Detailed mechanism: As an example, a request
message from a client with the IP address
1.2.3.4 sent to Google’s DNS resolver (located at
8.8.8.8) can be identified by the following 5-tuple
<ip_proto,src_ip,dst_ip,src_port,dst_port>
as a flow ID: <17, 1.2.3.4, 8.8.8.8, 54321, 53>.
Similarly, the corresponding response’s flow ID looks like:
<17, 8.8.8.8, 1.2.3.4, 53, 54321>. This means
that, for each request (response) the corresponding response
(request) can easily be identified as their headers contain
the same data in a different order (source and destination
fields swapped). Accordingly, in a network-wide setting,
by capturing the DNS packets (e.g., via filtering on port
53) one can identify each request (dst_port=53) and
response (src_port=53). While requests are usually an
order of magnitude smaller in size than the largest packet
size, an amplified response, on the other hand, may span
across multiple packets (cf. Sec. III) making a simple
packet level-based counting mechanism inefficient. Hence,
to accurately identify and count each response only once, in

Algorithm 1 Border, Input: Ingress packet pkt, ACL L,
Count-Min Sketch cms, ID borderId, Suspicious threshold τ

1: flowId ← hash(pkt.src_ip, pkt.dst_ip)
2: if pkt.ctrl then
3: L.insert(pkt.src_ip) # block source
4: drop(pkt)
5: end if
6: if pkt.src_ip ∈ L then # ACL
7: DROP(pkt)
8: end if
9: if pkt.src_port = 53 AND pkt.frag_offset = 0 then

10: cms.increment_count(flowId, 1) # count response
11: if cms.get_count(flowId) > τ then
12: ctrl.c_count ← cms.get_cnt(flowId)
13: ctrl.borderId ← borderId
14: push(ctrl, pkt) # add ctrl tag
15: end if
16: end if
17: FORWARD_PACKET(pkt)

DIDA, after capturing DNS packets, the IP header’s offset
field is also parsed1, and we only count a response packet if
its offset value is 0. Then, since the attack detection only
requires the true counts of each request and response without
identifying whether a flow is a response for a given request,
they can be easily identified (and counted) using the source
and destination IP addresses only.

Implementation-wise (cf. Alg. 1), when the number of
responses at Border2 hits τ = 10 (line 11), it appends
the information as a control header (lines 12-14 in Alg. 1)
to the original triggering packet, and forwards that packet in
the normal way (line 16). Upon receiving the tagged packet
by the access router Access1 (cf. Alg. 2), it parses out the
relevant information (i.e., source and destination IP addresses,
and counts) and checks the counts of the corresponding request
(line 3-4, step b in Fig. 1). If the difference is within a range
(σ), the suspicious packet is not considered as part of an attack;
hence after removing the tag (line 8), the specific response
packet will be forwarded to V (line 14). Observe, with σ we
tolerate some bias in the counts caused by packet losses, etc.

C. Mitigation

When the number of unsolicited responses from an abused
server A1 (step c in Fig. 1) is greater than σ (line 4 in
Alg. 2), then Access1 considers the suspicious responses
to be indeed part of an attack and it instructs Border3
to block the corresponding traffic (line 6). This instruction
is implemented by reusing the tagged packet received from
Border3 with the control tag zeroed out, the destination set
to Border3, while the IP address to be blocked is encoded
in the IP header’s source IP address field (lines 4-6 in Alg. 2);
accordingly, the control tag is used for identification only.

Upon receiving the control packet, Border3 knows that
this packet has to be treated and parsed differently. Accord-
ingly, Border3 extracts the source IP address, appends it

1During fragmentation, the first packet has an offset field set to 0, while the
consecutive packets for the same message have different values consequently.

Algorithm 2 Access, Input: Ingress packet pkt, Count-Min
Sketch cms, Tolerable range σ

1: flowId ← hash(pkt.src_ip, pkt.dst_ip)
2: if pkt.ctrl then # control message
3: cCount ← pkt.ctrl.c_count
4: if (cCount - cms.get_count(flowId)) > σ then
5: pkt.ctrl ← 0 # prepare alert
6: pkt.dst_ip ← GET_BORDER_IP(pkt.ctrl.borderId)
7: else
8: pop(ctrl, pkt) # remove ctrl tag
9: end if

10: end if
11: if pkt.dst_port = 53 then
12: cms.increment_count(flowId, 1) # count request
13: end if
14: FORWARD_PACKET(pkt)

to its in-network ACL, and drop the packet (lines 2-5 in
Alg. 1). An adversary outside the ISP could attempt to abuse
the algorithm by sending many forged DNS responses making
them appear from a legitimate service, e.g., a web service,
leading the benign source to be blacklisted. But DIDA can
defeat such attacks by using the {source IP address, source
port} pair for blocking. Besides, to foil the case where the
legitimate service is a DNS service (e.g., 8.8.8.8), we propose
to deploy a white list for known trusted recursive resolvers.

Observe that DIDA provides protection even if the abused
servers are distributed as the whole operation is only based
on the counts of the requests and the corresponding responses
irrespective of the number of sources.

D. Overcoming Limitation of the Data Plane

1) Data Structure for Counting: Choosing the right data
structure for keeping track of the traversing packets in the data
plane heavily depends on the application’s needs and the re-
source constraints of the programmable switches. Considering
DIDA’s demands and space efficiency, we rely on Count-Min
Sketch (CMS) [9] as a basis. For detection, the counts are only
relevant for a short interval; therefore, the data structure has to
be reset in between. While recent proposals rely on the control
plane to reach this end [14], [19], in order to perform traffic
monitoring entirely in the data plane, we extend CMS with
the notion of time. Briefly, the absolute time within a switch
(accessible via the timestamps [7]) is divided into equally long
monitoring intervals (e.g., 10 seconds). Each time an element
is updated in CMS, the actual monitoring interval is stored
next to the counts; whenever the current interval is greater
than the stored one, that slot is overwritten (i.e., reset).

2) In-network ACL for Mitigation: Maintaining an ACL in
a flow table is a straightforward task from the control plane,
but as yet infeasible entirely in today’s data plane (lest the
main centralized design concept of SDN is violated). Similar
to the monitoring task, thus, we have to rely on memory
efficient data structures for ACL implementation as packets
can also be matched on entries beyond the flow table (e.g., in
registers [7]). While probabilistic data structures (e.g. bloom
filters) that allow false positives can provide the required

accuracy for filtering malicious traffic, they cannot be used
for an ACL as it may result in blocking benign traffic.

Therefore, data structures with false negatives only, such
as hash tables, are appropriate. But traditional hash tables
with no collision resolution and low average load factor (i.e.,
∼50%) can have high false negative rates resulting in an
overall inefficient traffic filter. Hence, to implement an ACL,
we adapt Cuckoo Hash Tables (CHT) with four hash functions
and thus four logical stages, which is known to achieve ∼91%
load factor [20]. Note, a traditional hash table cannot guarantee
a constant worst-case lookup time; with CHT, only constant
number of buckets are accessed even in the worst case.

IV. PRELIMINARY EVALUATIONS

We prototype DIDA in P4 and emulate a DNS amplification
attack in a test environment of bare metal machines similar
to Fig. 1. Particularly, Border3 and Access1 are realized
by two software switches (BMv2, [6]) running on two work-
stations (Ubuntu 18.04, Intel i7-7700K, 16 GB mem.). The
victim (V) host (Intel i7-8565U, 16 GB mem.) is connected to
Access1, communicates with a similar host (say, U) outside
of the network through Border2 (not shown in Fig. 1).
Lastly, a similar host machine is used to send the malicious
traffic towards the victim through Border3. We generated an
AR-DDoS traffic trace that contains 7, 000 different reflectors
(going by real-world statistics [17]) spread out in 25 seconds.
For brevity, according to [21] the threshold (τ) along the
border is set to 10. Note, however, τ and σ can be dynamically
configured by the controller during the operation.

In this environment, we evaluated DIDA and the results are
depicted in Fig. 2. First, we run an iperf session between V
and U almost fully saturating the available bandwidth (93.7%),
then after 5 seconds the attack is launched with half the
bandwidth our border router has. As expected, it can be
observed that right after the attack is launched, the throughput
between V and U quickly drops to ∼45% of its baseline. Once
τ is reached, Border3 and Access1 quickly confirm the
presence of an attack and initiate the mitigation. The control
message overhead of the mitigation is negligible (∼550 kbps
at most; see the dashed line in Fig. 2). Within seconds, most
of the malicious sources are blocked at Border3 hindering
the attack to further consume the resources. In particular, with
a low false negative rate of CHT, 99.8% (6, 985 out of the
7, 000 IP addresses) of the abused servers are placed in the
ACL. Following the attack scenario, the ACL was build up as
new sources were identified during the 25s of attack period.
Consequently, the useful throughput goes back to its baseline.

Eventually, to handle an attack having 7, 000 different
sources, DIDA requires less than 100 KB of memory for
counting the responses and the requests at the border and the
access switches, respectively, while an additional 50 KB is
needed at the border switches for maintaining the ACL (∼1%
of the memory of recent programmable switches [22]).
Conclusion. We develop the first distributed in-network de-
fense architecture against AR-DDoS attacks. We show that
DIDA detects and mitigates AR-DDoS attacks with very high

0 5 10 15 20 25
0

20

40

60

80

100

Time [t]

N
et

w
or

k
ba

nd
w

id
th

[%
]

Attack rate@Border3
Attack rate@Victim
Victim’s throughput

0

500

1,000

1,500

2,000

C
ontrol

M
essage

O
verhead

[kbps]

Fig. 2: DIDA in action (mind the secondary y axis)

accuracy while requiring only limited resources. Next, we plan
to deploy DIDA on physical devices and perform large-scale
experiments against further DDoS scenarios.

REFERENCES

[1] N. Martin, “Overprovisioning VMs may be safe, but it isn’t sound,”
Blog post, https://bit.ly/37oCELJ, May 2014.

[2] S. K. Fayaz et al., “Bohatei: Flexible and elastic ddos defense,” in Proc.
of the USENIX Security, pp. 817–832.

[3] Cisco, “Effective DDoS Mitigation in Distributed Peering Environ-
ments,” White paper, https://bit.ly/2taak0P, 2018.

[4] N. Woolf, “DDoS attack that disrupted internet was largest of its kind in
history, experts say,” The Guardian, https://bit.ly/2ZA4Fgm, Oct 2016.

[5] Lily Hay Newman, “GitHub Survived the Biggest DDoS Attack Ever
Recorded,” Wired, https://bit.ly/2ZBWIY0, Jan 2018.

[6] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM CCR, vol. 44, no. 3, pp. 87–95, 2014.

[7] The P4 Architecture Working Group, “Portable Switch Architecture,”
https://bit.ly/2SNGrhF, Mar 2018.

[8] Broadcom, “Network Programming Language Specification v1.3,” https:
//bit.ly/37jOeYo, Jun 2019.

[9] G. Cormode et al., “An improved data stream summary: The count-min
sketch and its applications,” J. Algorithms, vol. 55, no. 1, 2005.

[10] Open vSwitch, “OVS Conntrack Tutorial,” Tutorial, https://bit.ly/
39qeq5j, [Accessed: 2019].

[11] G. Bianchi et al., “Openstate: programming platform-independent state-
ful openflow applications inside the switch,” ACM SIGCOMM CCR,
vol. 44, no. 2, pp. 44–51, 2014.

[12] S. Zhu et al., “Sdpa: Enhancing stateful forwarding for software-defined
networking,” in Proc. of IEEE ICNP, 2015, pp. 323–333.

[13] H. Wang et al., “Dram-based statistics counter array architecture with
performance guarantee,” IEEE ToN, vol. 20, no. 4, pp. 1040–1053, 2012.

[14] V. Sivaraman et al., “Heavy-hitter detection entirely in the data plane,”
in Proc. of SOSR, 2017, pp. 164–176.

[15] R. Harrison et al., “Network-wide heavy hitter detection with commodity
switches,” in SOSR, March 2018.

[16] B. Ben et al., “Network-wide routing-oblivious heavy hitters,” in Proc.
of ANCS, 2018, pp. 66–73.

[17] Marek Majkowski, “Reflections on reflection (attacks),” CloudFlare
Blogpost, https://bit.ly/2SVgUDb, 2017.

[18] R. van Rijswijk-Deij et al., “Dnssec and its potential for ddos attacks:
A comprehensive measurement study,” in Proc. of IMC’14.

[19] M. Yu et al., “Software defined traffic measurement with opensketch,”
in Proc. of USENIX NSDI, ser. nsdi’13, 2013, pp. 29–42.

[20] N. L. Scouarnec, “Cuckoo++ hash tables: High-performance hash tables
for networking applications,” in Proc. of ANCS, 2018, pp. 41–54.

[21] K. Cho, “MAWI Working Group Traffic Archive,” https://mawi.wide.ad.
jp/mawi/, [Accessed: 2020].

[22] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn,” in Proc. of ACM SIG-
COMM, 2013, pp. 99–110.

