
Computer Communications 36 (2013) 645–655
Contents lists available at SciVerse ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
Optimizing IGP link costs for improving IP-level resilience with Loop-Free Alternates

Levente Csikor ⇑, János Tapolcai, Gábor Rétvári
HSNLab, Dept. of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Hungary

a r t i c l e i n f o
Article history:
Available online 15 September 2012

Keywords:
IP Fast ReRoute
Loop-Free Alternates
Network optimization
Resilience
0140-3664/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.comcom.2012.09.004

⇑ Corresponding author. Tel.: +36 305247868.
E-mail addresses: csikor@tmit.bme.hu (L. Cs

(J. Tapolcai), retvari@tmit.bme.hu (G. Rétvári).
a b s t r a c t

The IP Fast ReRoute-Loop-Free Alternates (LFA) standard is a simple and easily deployable technique to
provide fast failure protection right in the IP layer. To our days, most major IP device vendors have prod-
ucts on the market that support LFA out of the box. Unfortunately, LFA usually cannot protect all possible
failure scenarios in a general network topology. Therefore, it is crucial to develop LFA-based network
optimization tools in order to assist operators in deciding whether deploying LFA in their network will
supply sufficient resiliency. In this paper, we give a new graph theoretical framework for analyzing
LFA failure case coverage, and then we investigate how to optimize the Interior Gateway Protocol
(IGP) link costs in order to maximize the number of protected failure scenarios. We show that this prob-
lem is NP-complete even in a very restricted formulation, and we give an exact algorithm as well as a
complete family of heuristics to solve it. Our simulation studies indicate that a deliberate tuning of the
approximation strategy can significantly improve the quality of the IGP link costs, and we conclude that
LFA cost optimization has the potential for boosting LFA-based resilience in most operational networks
significantly.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

To our days, the Internet Protocol (IP) suite has become the de
facto standard for large-scale inter-networking throughout the
world. The protocol suite, with its accompanying control plane
protocols, has come a long way to become a viable bearing plat-
form for commercial telecom services. Unfortunately, there still ex-
ists missing functionality in IP that make it difficult to sustain the
transmission quality required by multimedia applications, like
VoIP, IPTV, online gaming, etc., in an IP environment. One of the
most prominent shortcomings in existence today is the slow reac-
tion to device and link failures. Interior Gateway Protocols (IGPs),
like the Open Shortest Path First (OSPF, [1]) or the Integrated IS–
IS (IS–IS, [2]) routing protocol, adopt a restoration-based resilience
approach, based on a global flooding of failure information and a
lengthy network-wide re-convergence process. This slow reaction
to failures, inherent to the traditional IP control plane, does not
only hinder operators providing telecom services over pure IP,
but a growing number of service providers that switched to Multi-
Protocol Label Switching–Label Distribution Protocol (MPLS/LDP)
also suffer, because MPLS-LDP also relies on the IP control plane
for routing information.

The key to the slow convergence of IGPs is the global, reactive
response philosophy they adopt: failure information is distributed
ll rights reserved.

ikor), tapolcai@tmit.bme.hu
to all routers in the administrative scope, which in turn react by
recomputing their routing tables and refreshing their forwarding
information bases in accordance with the changed network topol-
ogy. This often leads to convergence time in the range of couple of
hundreds of milliseconds to several seconds, and even a very care-
ful adjustment of the IGP parameters [3] is insufficient to decrease
this to less than 50 ms, usually used as a rough estimate on the lon-
gest outage a modern multimedia application can tolerate.

In order to achieve a sub-50 ms convergence time, one needs to
go beyond conventional IGP-based restoration and invoke a proac-
tive, local protection method, called IP Fast ReRoute (IPFRR, [4]). In
IPFRR, routers precompute alternate next-hops proactively, and
traffic is instantly switched to these secondary next-hops should
the primary next-hop becomes unavailable. This ensures that traf-
fic flows without interruption until the IGP converges in the back-
ground. Note that in IPFRR only the routers in the immediate
vicinity of the failed component participate in the failure recovery
process, and routers several hops away do not even get notified
about the outage. This saves the time needed for global failure
notification, one of the most time-consuming steps in IGP-based
restoration.

It turned out, however, that combining local protection with IP’s
intrinsic destination-based forwarding scheme is notoriously diffi-
cult. This is because a router not immediately adjacent to the fail-
ure, not knowing that a failure in fact has occurred, has no way to
decide whether a received packet is traveling on its default short-
est path to the destination, or it is actually being routed around a
failure and so out-of-order forwarding rules should be applied to

http://dx.doi.org/10.1016/j.comcom.2012.09.004
mailto:csikor@tmit.bme.hu
mailto:tapolcai@tmit.bme.hu
mailto:retvari@tmit.bme.hu
http://dx.doi.org/10.1016/j.comcom.2012.09.004
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

646 L. Csikor et al. / Computer Communications 36 (2013) 645–655
it. Any IPFRR mechanism, therefore, that does not adopt special
remedies to this problem, is prone to either producing micro-loops
or being unable to handle certain failure cases [5]. To avoid this,
IPFRR proposals either apply explicit or implicit failure signaling
[6–8], or alter IP’s destination-based forwarding [9], or introduce
tunnels to route around the failed component [10–12]. Deploying
these IPFRR mechanisms, however, would either demand non-triv-
ial modifications to the essential IP infrastructure or impose con-
siderable management burden on network operations [13] (or
both), making network device vendors reluctant to implement
them and discouraging operators from deploying IPFRR all
together.

To our days, only a single IPFRR specification has found its way
into commercial IP routers: Loop-Free Alternates (LFA, [14]). This
can be attributed to the fact that LFA is a clever trade-off between
simplicity and protection-capability, in that LFA has never been in-
tended to provide 100% protection for all possible failure cases be-
cause, as we argued above, this would require widespread
modifications to the IP infrastructure and so would hinder deploy-
ment. Instead, LFA is as simple as it can get: traffic impacted by a
failure is passed onto an alternate next-hop (called a Loop Free
Alternate) that still has an intact path to the destination. When
the aim is merely to protect against link outages then it is enough
to ensure that the detour bypasses the link to the next-hop, while
for node-protecting LFAs it is a requirement to avoid both the link
to the next-hop and the next-hop itself. LFA can be implemented
with a straightforward upgrade to IGPs, without special staff-train-
ing and extensive pilot deployments, and so it can be introduced
incrementally. On the other hand, as the price of this simplicity,
depending on the network topology and IGP link costs very often
not all routers have LFAs to all destinations, making it impossible
to repair certain failure scenarios rapidly with LFA.

Consequently, many operators are hesitating to enable LFA, try-
ing to measure the expected benefits against the additional costs.
In this paper, we seek ways to assist in making this important deci-
sion. In the first part, we give new graph theoretical tools for ana-
lyzing LFA failure case coverage in operational networks. Similar
protectability analyses are already available for some non-stan-
dardized IPFRR mechanisms: [15] considers the O2 method and
[16] discusses a centralized destination-based routing scheme.
For LFA, only simulation-based reports have been available this
far [17–20], and mathematical analysis has been confined to the
link-protection case [21,22]. Below, we extend previous work on
mathematical LFA-coverage analysis with new tools for studying
both the link- and node-protection cases as well.

Initial deployments as well as numerical analyses confirmed
that in many operational networks LFA indeed does not guarantee
protection for all failure scenarios [19]. This calls for developing
network optimization tools to tune the network topology in a
way as to increase the number of failure cases protectable by
LFA. There are various approaches to reach this end. One way is
LFA network design, which aims to design LFA-friendly network
topologies right from the outset [20]. Another approach is LFA
graph extension, where the task is to alter the network topology
to boost LFA coverage [21]). Third, LFA cost optimization asks to
construct IGP link costs in a way as to maximize the number of
possible failure cases protectable by LFA [23,24,22]. This LFA cost
optimization problem is in the main focus in the second part of this
paper. While improving IP resilience is a recurring theme in the lit-
erature (see [25] for deflection routing, [15] for O2, or [16] for a re-
view), for the specific case of LFA only the joint optimization of
network performance and resilience has been investigated previ-
ously [23,24]. Thus, at the moment very little understanding is
available as to how much LFA-based IP Fast ReRoute is suitable
to protect an IP network and to what extent this can be improved
by optimizing link costs.
The main contributions in this paper are as follows.

� We develop a comprehensive graph theoretical LFA analysis
framework, for the first time considering both the link-protec-
tion and node-protection cases.
� We study the LFA cost optimization problem in huge detail. We

show that this problem is NP-complete, and we give an exact
algorithm of exponential complexity as well as a family of heu-
ristics with tunable performance and running time. Our selec-
tion of heuristics facilitate for picking the right approximation
algorithm for the particular problem under consideration.
� We provide a comprehensive numerical evaluation of LFA cost

optimization methods to compare their performance on a wide
range of artificial and realistic graph topologies.

The rest of this paper is organized as follows. After reviewing the re-
lated literature in Section 2 and introducing the notations and the
model in Section 3, we first discuss LFA failure coverage analysis
(see Section 4). Then, in Section 5 we turn to discuss the LFA cost
optimization problem. In Section 6, we evaluate the proposed algo-
rithms numerically and finally we conclude our work with Section 7.

2. Related works

The IP fast ReRoute Framework was initiated by the Internet
Engineering Task Force in [4], and the Loop-Free Alternates stan-
dard, as the basic specification for IPFRR, was subsequently docu-
mented in [14]. It was from the very beginning made clear by
the IETF that LFA does not guarantee fast protection for all possible
failure scenarios in all network topologies. This was later con-
firmed by extensive simulation studies, which indicated that,
depending on the topology and link cost settings, LFA can usually
protect only about 50–80% of the possible link failure scenarios,
and the level of node protection is even worse [17–19,26]. These
LFA coverage analyses are all quantitative studies, based on calcu-
lating the LFA coverage for various real-life network topologies.
Perhaps the most detailed amongst these is [20], which inspects
the applicability of LFA in common access network topologies. So
far, no qualitative analyses have been available in the literature,
which would help uncover the graph theoretical ingredients
needed for good LFA coverage. We initiated the work in that direc-
tion in [21,22], and in this paper we refine our earlier results and
generalize them to the node-protection case as well. Possibly the
closest to ours is the study in [16], where the authors perform a
qualitative protectability analysis for a fast resilience scheme they
call IP protection routing. Protection routing is appealing for such
an analysis in that it is much easier to approach theoretically than
LFA, however, in practice it is somewhat less attractive as imple-
menting it requires centralized control over the routing tables.

Since the appearance of the original LFA draft, countless IPFRR
proposals have surfaced. Implicit in these proposals is the recogni-
tion that in order to protect all failure scenarios one either needs to
go beyond standard IP forwarding and/or apply some forms of fail-
ure notification. The reason for this is that a router must give spe-
cial treatment to packets traveling on a detour around a failure, or
otherwise forwarding loops will arise in certain failure scenarios.

Most IPFRR proposals choose the former option and intervene at
the level of IP packet forwarding. Failure Insensitive Routing
[9,27,5] differentiates packets based on the incoming interface they
arrive through, letting the router to guess the failure’s location from
the direction of the received packets and exploit this information in
the course of packet forwarding. Multiple Routing Configurations
[8] call to achieve the same goal with explicit packet marking, while
other proposals, like Not-via Addresses, use tunnels to this end
[10–13]. Unfortunately, the former solution would allocate invalu-
able bits in the IP header, while the latter might cause painful

Table 1
List of notations.

GðV ; EÞ connected undirected graph, with node set V and edge set E

Ni set of neighbors of some node i
c edge cost function, c : E # N

cði; jÞ cost of an edge between node i and node j
distði; jÞ shortest path distance from node i to node j
gðG; cÞ LFA failure case coverage for graph G over link costs c
gLPðG; cÞ link-protecting LFA coverage

gNPðG; cÞ node-protecting LFA coverage
S set of node-pairs, S# V � V
D average node degree
Dmax maximum node degree

L. Csikor et al. / Computer Communications 36 (2013) 645–655 647
packet fragmentation and time-consuming reassembly at the tun-
nel endpoint if the additional IP header did not fit into the MTU.
Deflection routing for fast rerouting purposes is proposed in [25],
while O2 routing, a resilient multi-path data forwarding method,
is specified in [28]. Both require non-standard IP forwarding func-
tionality, unavailable in commercial routers at the moment.

A different approach is to use explicit signaling to notify routers
about failures [6,29]. This avoids having to modify standard IP for-
warding at the price of a establishing a separate signaling mecha-
nism just for IPFRR. Proposals also exist to combine different IPFRR
mechanisms to achieve full protection [26]. Good overviews on
IPFRR are [17,19].

So far, only one IPFRR method has found its way into commer-
cial routers, and hence into operational IP networks: LFA. At least
two major vendors are already providing LFA out of the box
[30,31], and other vendors are expected to follow suit.

Finding methods to design or optimize networks in an attempt
to improve fast resiliency has been an actively researched topic la-
tely. In the recent literature, [25] seems to be the first reference
that, besides motivating the need for fast IP resilience with detailed
failure case analysis in an operational backbone, proposes a method
to improve the robustness of the network against such failures. The-
ory and algorithms for topology optimization for O2 are presented
in [15], and a generic approach for protection routing is given in
[16]. Apart from our studies in [21,22], the only attempts at LFA-ori-
ented network optimization seem to be [23] and (partly) [24].

A common theme shared by most approaches is that (with the
exception of [15]) each one addresses the optimization of network
resilience and routing performance simultaneously. The former aims
at better protection against failures, while the latter is called to min-
imize congestion and distribute load evenly in the network with re-
spect to some known, measured or predicted, traffic matrix [32]. A
good example of this approach is [23], where the authors formulate
the joint LFA cost optimization and traffic engineering problem as a
constraint-programming task and feed it into a generic solver.

In this paper, we study LFA cost optimization, that is, the task of
improving LFA coverage by tuning IGP link costs, separately from
load balancing. Our work, in this regard, is complementary to the
above joint optimization frameworks and, as shall be shown, pro-
vides interesting further insights. For instance, we find that LFA
cost optimization alone, even in a very minimalistic setting, is al-
ready NP-complete. This far, only NP-completeness for the joint
optimization problem was known [23], but this could have easily
been attributed to the well-known NP-completeness of OSPF traffic
engineering [33]. Our approach also allows to investigate the
inherent limitations of LFA-based IP Fast ReRoute, without the dis-
tortion of load balancing concerns, and the extent to which opti-
mizing costs just for the purpose of IPFRR can improve the
resilience in IP networks.

We acknowledge, however, that applicability of our LFA cost
optimization methods might be limited due to the lack of built-
in load balancing criteria. We note, though, that we are aware of
many operators that weigh certain operational concerns more
important than load balancing, and even if load balancing is a
must, the heuristics we present in the paper are easy to augment
to consider such issues.

3. Model and problem formulation

We model the network with a connected, undirected graph
GðV ; EÞ, the set of nodes is denoted by V (jV j ¼ n) and set of edges
by E (jEj ¼ m). Let Ni denote the set of neighbors of some node
i 2 V . IGP link costs are represented by an edge cost function
c : E # N. The cost of an edge ði; jÞ is denoted by cði; jÞ. We presume
that the network topology GðV ; EÞ and the cost function c are read-
ily available to the network nodes through the IGP, using which all
routers can compute the shortest path distance between any two
routers in the network. Denote the distance from node i to node j
with distði; jÞ.

For a list of notations, consult Table 1.
In this paper, we make the following key assumptions about the

network:

� the network consists of point-to-point links only and there are
no broadcast LANs;
� link costs are symmetric;
� if multiple shortest paths towards a destination exist, each node

fixes one default path arbitrarily (no Equal-Cost MultiPath); and
� failure events are independent and singular, so no Shared Risk

Link Groups (SRLGs) and multiple failures are taken into
consideration.

Note that these assumptions are easy to eliminate, but the develop-
ment and the notation become substantially more complex.

3.1. Loop-Free Alternates

Fig. 1 shows a sample network, with costs indicated near the
edges and shortest paths towards node f marked by arrows. For in-
stance, node b’s next-hop along the shortest path to node f is node
e. Should the link from b to its next-hop e become unavailable, b
can safely switch to an alternate next-hop, in this case node d, even
without explicitly notifying it about the failure, as d will never send
packets destined to f through b so no loop can arise. In such cases,
we say that d is a link-protecting LFA for node b towards the desti-
nation node f [14].

Definition 1. For some source s and destination d, let e be the
default next-hop of s towards d. Then, some neighbor n of s is a
link-protecting LFA for s to d if

(i) n – e, and
(ii) the loop-free condition applies:
distðn;dÞ < distðn; sÞ þ distðs;dÞ: ð1Þ
In other words, any neighbor that is not an upstream in the
shortest path tree is a link-protecting LFA. Besides node b; e also
has an LFA to f (the same d as that of b), and so has d and c (e
and d, respectively). What is more, the LFAs of b and c are node-
protecting as well, as the shortest path from the LFA to d does
not traverse the default next-hop and so it protects against both
the failure of the link to the next-hop and the next-hop itself.
The below definition formalizes this requirement.

Definition 2. For some source s and destination d, let e be the
default next-hop of s towards d. Then, some neighbor n of s is a
node-protecting LFA for s to d if, in addition to (i) and (ii) in
Definition 1, the node-protection condition also applies:

Fig. 1. Sample network, edge costs and shortest paths to node f.

648 L. Csikor et al. / Computer Communications 36 (2013) 645–655
distðn; dÞ < distðn; eÞ þ distðe;dÞ: ð2Þ
Continuing with our enumeration of LFA-types, we find that d is

also a so called per-link LFA for b, as it protects all nodes reachable
from b through the link ðb; eÞ. For a full taxonomy, see [14,20].

We observe that, in the present network topology with the gi-
ven link costs, node a does not have an LFA to f. This is because
it has only two neighbors, one is the next-hop d towards f whose
failure we want to protect, and the other is an upstream node,
which cannot provide an LFA by (1). Given a graph GðV ; EÞ and a
cost function c, let ILP

s;dðG; cÞ be an indicator variable whose value
is 1 if node s has a link-protecting LFA to node d, and zero other-
wise. Then, given a set of source-destination pairs
S ¼ fðsk; dkÞ : k 2 1; . . . ;K; sk – dkg the link-protecting LFA coverage
with respect to S is defined as (inspired by [14]):

gLP
S ðG; cÞ ¼

1
jSj

X

ðs;dÞ2S
ILP
s;dðG; cÞ: ð3Þ

Similarly, let INP
s;dðG; cÞ be an indicator variable for node-protecting

LFA coverage. Note, however, that special care must be taken to
handle the so called last-hop problem, which arises when d is an
immediate neighbor of s and the default shortest path between
them is exactly the ðs;dÞ link (see for instance the case of the
ðe; f Þ pair in Fig. 1). In such cases, the node failure we want to pro-
tect is exactly the failure of destination d itself, a failure case hardly
protectable by LFA. Therefore, for such ðs;dÞ pairs we only require
that the link ðs; dÞ be protected by a link-protecting LFA, and we
ignore the stronger node-protection requirement (2). Consequently,
INP
s;dðG; cÞ takes the value 1 if and only if

(i) d is not the immediate next-hop of s to d and s has a node-
protecting LFA to d, or

(ii) d is the immediate next-hop of s to d and s has a link-pro-
tecting LFA to d.

Then, the node-protecting LFA coverage is defined as

gNP
S ðG; cÞ ¼

1
jSj

X

ðs;dÞ2S
INP
s;dðG; cÞ: ð4Þ

In some cases, it will be convenient to refer to both link-protecting
and node-protecting LFAs under a common term. In such cases, we
shall only say ‘‘an LFA exists’’ and the corresponding coverage met-
ric will be written as gSðG; cÞ. Moreover, we shall often confine our-
selves to the special cases when S is the set of all node pairs whose
destination is a given terminal node d : Sd ¼ fðs;dÞ : s 2 V n fdgg, or
when S contains all distinct node pairs in V � V . In the latter case,
we shall neglect to indicate S in the LFA coverage metric and simply
write gLPðG; cÞ, gNPðG; cÞ, and we shall use the shorthand notation
gðG; cÞ when LFA type does not matter.

3.2. LFA cost optimization: problem formulation

As our example shows, usually not all nodes have LFA to all des-
tinations. There are basically two ways to remedy this: by adding
new edges to the graph or by altering the edge costs. Taken the
example of Fig. 1, adding the new edge ða; bÞ to E and setting its
cost to, say, 10, will let b to become an LFA of a (and vice versa).
The LFA graph extension problem asks to achieve maximal LFA pro-
tection by adding the minimum number of new edges. We address
this problem in a separate paper [21]. The other way is to change
edge costs: if we, for instance, reduce the cost of edge ðc; dÞ from
8 to 5, then c’s shortest path to f will bypass a and so a and c will
become (link-protecting) LFAs to each other. This paper is devoted
to investigate this very problem. Formally, we define the LFA cost
optimization problem for the link-protecting case as follows:

Definition 3. LFACostOptLP (G;S): Given a graph GðV ; EÞ and a set
of source–destination pairs S, is there a cost function c so that
gLP
S ðG; cÞ ¼ 1?

Easily, a similar problem formulation LFACostOptNP exists for
the node-protecting case as well. When no ambiguity arises, we
shall refer to both problems simply as LFACostOpt. In addition,
we shall in many cases treat the optimization version of these
problems, that is, we shall seek the costs that maximize net-
work-wide LFA coverage instead of merely asking whether or not
a cost setting for full protection exists.
4. LFA failure coverage analysis

Before turning to discuss how to solve the LFA cost optimization
problem, first we show some simple theoretical limits on LFA cov-
erage. In particular, we give tight graph theoretical lower and
upper bounds on the LFA coverage achievable in a given graph un-
der any selection of link costs. We shall discuss both the link-pro-
tecting and the node-protecting cases.

Our analysis is intended to serve for operators to quickly assess
the benefits LFA-based fast protection can bring in their network as
well as the inherent limitations thereof. In addition, the lower and
upper bounds provide rule-of-thumb guidance on how ‘‘good’’ the
actual selection of IGP link costs is from the aspect of LFA: a cost
setting that realizes the theoretical upper bound is considered
favorable, while a cost setting that yields LFA coverage close to
the lower bound is considered poor for LFA. In the latter case,
LFA cost optimization might be especially beneficial. Last but not
least, the theoretical analysis reveals an interesting relation be-
tween LFA coverage and an essential characteristic of the underly-
ing graph topology, the average node degree. As shall be seen, a
sparse graph (one with average node degree less than about 2:5)
usually does not admit good LFA coverage, no matter which link
costs are chosen. If an operator finds his network falls under this
characterization, then this may be a good indicator that LFA cost
optimization will most probably not bring significant improve-
ments in LFA coverage. In such cases, the operator should resort
to alternative LFA network optimization methodologies [21] or
alternative fast protection mechanisms [34].

Some preliminaries. In what follows, we assume that
S ¼ ðV � VÞ n fðv ;vÞ : v 2 Vg. Let D denote the average node de-
gree in G and let Dmax be the maximum degree. Easily, D P 2ðn�1Þ

n
for any connected graph, since the sparsest connected graphs are
trees for which D ¼ 2ðn�1Þ

n . A D-regular graph is a graph in which
all nodes are of constant degree D. An even (odd) ring is a cycle
graph with an even (odd) number of nodes. Rings are the small-
est-degree 2-connected regular graphs (in particular, D ¼ 2).

First, we extend the analysis on even and odd rings given in [21]
to the node-protecting case.

Lemma 1. For an even ring with n > 2 and uniform costs:
gLPðG; cÞ ¼ gNPðG; cÞ ¼ 1

n�1. For an odd ring with n > 2 and uniform
costs: gLPðG; cÞ ¼ gNPðG; cÞ ¼ 2

n�1.

L. Csikor et al. / Computer Communications 36 (2013) 645–655 649
Proof. Consider a ring Cn of n > 2 nodes and n even, let costs be
uniform, and let d be some node in Cn. Then, any node s – d has
exactly one shortest path to d, except the node on the opposite of
d, which has two. One easily sees that this is the only node that
has LFA to d in Cn (which is both link- and node-protecting), because
for any other node the only possible alternative is upstream and so
cannot be LFA by (1). Due to symmetry, the derivation holds for each
node and so exactly n nodes have LFA, which gives gðG; cÞ ¼ 1

n�1. The
development is similar for odd rings, but now we have two nodes
per destination that have LFA instead of one. h

Next, we present simple lower and upper bounds on LFA cover-
age. Our bounds are based on the following idea. The shortest path
tree to some destination d can contain only n� 1 edges, and all the
remaining edges can be used for providing LFAs to their endpoints.
In particular, an out-of-tree edge provides at most 2 LFAs (either
node-protecting or link-protecting or both), and at least 1 link-pro-
tecting LFA towards d.

Consider the following lemma.

Lemma 2. For any connected simple graph G with n > 2:

gNPðG; cÞ 6 gLPðG; cÞ 6 n
n� 1

ðD� 2Þ þ 2
n� 1

:

Proof. First, gNPðG; cÞ 6 gLPðG; cÞ is trivial1 from Definition 1 and 2. To
prove the second part of the claim, we observe that an edge not con-
tained in the shortest path tree rooted at some d provides at most 2
link-protecting LFAs towards d (when the edge lies between two
branches of the tree), while on-tree edges do not create any LFA. Since
the number of out-of-tree edges is exactly m� ðn� 1Þ, at most
2ðm� nþ 1Þ ¼ nD� 2nþ 2 ¼ nðD� 2Þ þ 2 nodes can have LFA to d.
Taken the sum over all nodes and dividing by the number of source-
destination pairs gives gðG; cÞ 6 nðnðD�2Þþ2Þ

nðn�1Þ ¼ n
n�1 ðD� 2Þ þ 2

n�1. h

The Lemma is non-trivial for 2ðn�1Þ
n 6 D < 3. For trees, in partic-

ular, we obtain gðG; cÞ 6 0, which implies that the Lemma is tight
for trees over arbitrary link costs. It is tight for uniform cost odd
rings as well, for which we obtain gðG; cÞ 6 2

n�1 (c.f., Lemma 1).
What the above Lemma in essence says is that in large sparse

graphs LFA-coverage is upper bounded by the average node de-
gree: gðG; cÞ 6 D� 2. In the course of our numerical evaluations,
we found that this relation is present in most real-world networks
as well (see later).

The next Lemma gives a lower bound on the LFA coverage. Note,
however, that the result concerns link-protecting LFAs exclusively.

Lemma 3. For any connected simple graph G with n > 2:

gLPðG; cÞP n
n� 1

D
2 � 1

Dmax � 1
þ 1
ðn� 1ÞðDmax � 1Þ :
Proof. Again, exactly n� 1 nodes are contained in the shortest
path tree of d, and an out-of-tree edge (of which we have
m� nþ 1) can provide at least one LFA towards d: (i) if the edge
is inside a single branch of the shortest path tree, then it provides
LFA from the upstream to the downstream; (ii) if the edge lies
between two branches, it still creates at least one link-protecting
LFA (in fact, it creates two), but it might not create any node-pro-
tecting LFA at all. In consequence, there are m� nþ 1 out-of-tree
edges that are incident to at least m�nþ1

Dmax�1 ¼
nðD2�1Þþ1
Dmax�1 nodes providing

a link-protecting LFA towards d (the term Dmax � 1 is because every
node has at least one in-tree edge, so only the rest count as out-of-
1 Note that this is only true when all links in the network are point-to-point. When
the network contains broadcast LANs, the relation becomes dimmer [14].
tree edges). Taking the sum over all nodes and dividing by nðn� 1Þ
gives the required result. h

The most important message here is that LFA coverage in-
creases with D, that is, the denser the network the higher the
link-protecting LFA coverage.

Corollary 1. For a D-regular graph RD on n nodes:

gLPðRD; cÞP
1
2
� 1

2
n� D� 1

ðn� 1ÞðD� 1Þ :

This gives gLPðR2; cÞP 1
n�1 and gLPðR3; cÞP 1

4þ 3
4

1
n�1 >

1
4. From

this, we conclude that the lower bound of Lemma 3 is tight for even
rings (again, by Lemma 1). One easily sees that it is tight for trees
as well.

We have seen that LFA coverage fundamentally depends on the
average node degree. This raises the question whether we can find
graphs of low degree with 100% LFA coverage. We found that the 2-
connected graph with the smallest possible average degree that
can still be fully protected using LFA is the 3-ring C3. Every other
2-connected graph with complete LFA coverage has average degree
higher than 2. By Lemma 1, gðC3; cÞ ¼ 1 which is attained when c is
uniform, and one easily sees that gðC3; cÞ is the only 2-connected
graph of average degree D ¼ 2 with this property. Graphs with
D < 2 cannot have full protection because such graphs contain at
least one node with degree 1 whose single outgoing link can never
be protected. On the other hand, larger 2-connected graphs with
D ¼ 2 are all ring topologies, and rings can only have full LFA cov-
erage if n ¼ 3 (again, by Lemma 1).

5. LFA cost optimization

Next, we turn to the LFA cost optimization problem. This prob-
lem asks for an IGP link cost setting that maximizes the LFA cover-
age, given the inherent limitations of the network topology under
consideration. First, we characterize the extent to which such an
optimization can improve LFA coverage, then we discuss the com-
plexity and the algorithmic aspects of the problem. Most of the
observations apply to LFAs generally, without regard to link-pro-
tection or node-protection, so, unless otherwise stated, the term
LFA will refer to link-protecting LFAs in the sequel. We shall indi-
cate clearly in the text when LFA types indeed matter.

5.1. The potential of LFA cost optimization

The question immediately arises as to whether it is worth opti-
mizing costs for LFA at all. Easily, readjusting costs in most of the
cases alters, possibly in a negative way, default shortest paths,
which might have been previously tweaked with great accuracy
to match the needs of the network in terms of load balancing, traf-
fic engineering, etc. [32,35,36]. On the other hand, as shall be
shown through an example below, the wins achievable with opti-
mizing link costs for LFA can be substantial (more than 50%), and
such a huge improvement in fast resiliency might compensate
for the losses in forwarding efficiency in certain cases.

Consider the so called ‘‘Möbius ladder’’ topologies depicted in
Fig. 2. These graphs consist of an even ring with all the main diag-
onals added. In Fig. 2(a), the cost of diagonals is chosen so that the
path between any two nodes is shorter around the ring than
through it via a diagonal. This way, as one easily checks, the graph
has complete LFA coverage, both in terms of link-protection and
node-protection. The graph construction can be generalized to
arbitrary even n, and one can always choose the above cost setting
strategy to achieve complete LFA protection. Fig. 2(b) also depicts a
Möbius ladder (for n ¼ 10), just with setting costs uniformly at all
edges and drawn in a slightly awkward layout. The layout was

650 L. Csikor et al. / Computer Communications 36 (2013) 645–655
chosen so that one can easily check the validity of the following
claim for any Möbius ladder with n

2 odd, n > 2 and c uniform: for
every d 2 V , exactly n

2� 1 nodes have link-protecting and node-
protecting LFA to d. Considering the node d we marked in
Fig. 2(b), there is exactly one node in each ‘‘column’’ that has an
LFA to d, except for the column of d in which there is no protected
node. This gives gðG; cÞ ¼ 1

2� 1
2

1
n�1 <

1
2, again, in terms of both link-

protection and node-protection. For instance, in our example
gðG; cÞ ¼ 4

9.
This example shows that different selections of edge costs can

produce dramatical differences in LFA failure case coverage. Simu-
lation studies presented later also seem to support this claim. The
other lesson is that resilience and forwarding efficiency are usually
contradicting requirements in routing: in our example in the latter
case all traffic flows along min-hop paths but resilience is poor,
while in the former case we have full protection but long forward-
ing paths going around the ring instead of taking the shortcuts
through it. Such ‘‘joker’’ links that do not carry traffic seem a gen-
eral requirement for protectability [15].

5.2. Computational complexity

Next, we discuss the computational complexity of the LFA cost
optimization problem given in Definition 3.

As it turns out, the full-fledged LFA cost optimization problem is
NP-complete. This result is not particularly unexpected, as we
found basically all other LFA-related network optimization prob-
lems NP-complete as well [21]. Taking a closer look, we find that
there are two reasons due to which the problem is difficult. First,
there is an inherent coupling between the LFAs to different desti-
nations through the link costs, which makes it difficult to take
independent decisions. In particular, assigning a neighbor as an
LFA towards some destination necessitates adjusting edge costs
accordingly, but this may destroy LFAs to other destinations. Sec-
ond, even assigning LFAs to just a single destination seems difficult
enough. Consider the following theorem characterizing the diffi-
culty of the node-protecting case.

Theorem 1. Given a graph GðV ; EÞ and a node d 2 V, LFACostOptNP
(G, Sd) with Sd ¼ fðs; dÞ : s 2 V n fdgg is NP-complete.
Proof. Easily, LFACostOptNP (G;Sd) is in NP. To prove NP-hardness,
we show that it is essentially equivalent to the protection routing
problem, proved to be NP-complete in [16].

Definition 4.
PR (G; d): given a graph GðV ; EÞ and some d 2 V , is there a

directed spanning DAG RdðV ; EdÞ : Ed # E rooted at d, so that for any
single node or link failure f every node s 2 V n fdg has a neighbor
k : ðs; kÞ R Ed for which it holds that (i) k is not upstream of s in Rf

d,
and (ii) there is a k! d path in Rf

d, where Rf
d is obtained from Rd by

removing the failed component f.
Fig. 2. Möbius ladder topologies.
The basic differences are that (a) LFACostOpt (G;Sd) is defined in
terms of costs, while PR (G; d) in terms of a routing DAG Rd, and
(b) item (ii) in the above definition. To show equivalence, we need
to handle these differences. First, we show that a cost function c
uniquely determines Rd and vice versa, in that we can show a map-
ping from c to Rd so that a path is shortest path over c if and only if
it is contained in Rd (this will handle (a)). Easily, the shortest paths
over c are always in a DAG. The reverse direction, that is, taking Rd

and creating a cost c of it, is equally easy: take a topological order-
ing oðvÞ : v 2 V of Rd (this always exists) and for each ði; jÞ 2 E set
cði; jÞ ¼ oðjÞ � oðiÞ if ði; jÞ 2 Ed and cði; jÞ ¼ n otherwise.

Second, (b) means that in PR (G; d) we only take a node for
protected, if after a failure f all the paths of the secondary next-hop
in Rd avoid f. However, this is guaranteed by the node-protecting
condition (2). h

A similar result can be shown for the link-protecting case as
well. Below, we only state the result but we do not give a detailed
proof. We only note that the proof involves observing that the NP-
completeness argumentation in [16] remains valid if we treat link
failures only and disregard node failures, from which the deriva-
tion is straight forward.

Theorem 2. Given a graph GðV ; EÞ and a node d 2 V, LFACostOptLP
(G, Sd) is NP-complete.

Theorem 1 and Theorem 2, stated for the special case of LFA-
CostOpt (G;Sd), yield the following complexity characterization
for the full-fledged LFA cost optimization problem.

Corollary 2. The LFA cost optimization problems LFACostOptLP (G;S)
and LFACostOptNP (G;S) are NP-complete.

Additionally, we also observe that the optimization version,
which asks for a cost maximizing LFA coverage, is also intractable.

5.3. An exact algorithm

LFA cost optimization is difficult, yet solving it would be extre-
mely useful for improving the resilience in operational IP net-
works. Next, we give an Integer Linear Program (ILP) suitable for
obtaining optimal solutions only in small networks. For simplicity,
we assume that S contains all distinct node-pairs, noting that the
algorithms are easy to generalize to arbitrary S.

The ILP is formulated in the dual space: to every node i we as-
sign a node potential pd

i that signifies the shortest distance from i
to some d over the costs c, and then we require that the potentials
and the costs together fulfill the shortest path optimality criteria
[37] while also maximizing LFA coverage.

Consider the below ILP for the link-protecting version of the LFA
cost optimization problem:

max
X

ðs;dÞ2S

ad
s ð5Þ

pd
j þ sd

ij ¼ pd
i þ cij; 0 6 sd

ij 6 Cyd
ij

8ðs; dÞ 2 S; 8ði; jÞ 2 E ð6Þ
X

v2Ns

yd
sv 6 jNsj � 1 8ðs;dÞ 2 S ð7Þ

yd
sv 2 f0;1g 8ðs;dÞ 2 S; 8v 2 Ns ð8Þ

ps
v � ps

s þ pd
s � pd

v þ zd
sv 6 0; 0 6 zd

sv 6 1

8ðs; dÞ 2 S; 8v 2 Ns ð9Þ

L. Csikor et al. / Computer Communications 36 (2013) 645–655 651
X

v2Ns

zd
sv P ad

s ; 0 6 ad
s 6 1 8ðs;dÞ 2 S ð10Þ

cij ¼ cji; cij 2 f1; . . . ;Cmaxg 8ði; jÞ 2 E ð11Þ

In the ILP, (6)–(8) enforce the Shortest Path Optimality Criteria. In
particular, for each destination d and each node s, the node poten-
tial pd

s is set so that the potential-difference pd
d � pd

s encodes the
shortest path distance distðs;dÞ from s to d. For each edge ði; jÞ,
the constraint pd

j 6 pd
i þ cij relates the node potentials to the actual

cost setting c, and the binary variable yd
sv is used to guarantee that

the inequality is satisfied with strict equality for at least one neigh-
bor v of each s [37]. Namely, yd

sv takes the value 0 if and only if v is a
shortest path next-hop from s to d and 1 otherwise, and (7) guaran-
tees that for at least one neighbor v of s variable yd

sv will be set to 0.
Furthermore, (9),(10) represent the link-protecting LFA condition

as of (1). In particular, writing (9) in a more verbose form we get:

ðpd
d � pd

vÞ þ zd
sv 6 ðps

s � ps
vÞ þ ðpd

d � pd
s Þ;

which basically coincides with (1) when zd
sv > 0 by substituting

pj
j � pj

i ¼ distði; jÞ. Correspondingly, zd
sv in fact serves as an indicator

variable whose value is positive if and only if v is a link-protecting
LFA from s to d. Moreover, (10) ensures that ad

s only becomes posi-
tive if at least one neighbor of s provides LFA towards d. The
requirements (11) guarantee that costs are symmetric and are se-
lected from the interval f1; . . . ;Cmaxg. Finally, the objective function
(5) maximizes the number of LFA protected node pairs.

There are two problem parameters to the ILP: Cmax is the max-
imum permitted cost, while C P nCmax is the maximum allowed
potential difference between two neighboring nodes. Then, solving
the ILP to optimality yields the link cost setting c that maximizes
gLPðG; cÞ over the input topology G. This can be done by any stan-
dard branch-and-bound ILP solver, at least as long as the size of
the network is not particularly large (see later). Tightening the
ILP, like strengthening the formulation by cutting planes [38], is
beyond the scope of this paper.

The ILP is easy to modify to handle the node-protecting version
of the LFA cost optimization problem. For this, we need to augment
9,10 with the following constraints:

pe
v � pe

e þ pd
e � pd

v þ zd
sv 6 Cyd

se8ðs;dÞ 2 S; 8v 2 Ns; 8e

2 Ns n fd; vg ð12Þ

Here, the new constraints (12) will only let zd
sv to take a positive va-

lue, indicating that v is a node-protecting s� d LFA, if (2) holds in
addition to (1).

5.4. Approximate algorithms

The above ILP has Oðn3Þ integer variables, which makes it
intractable in anything but the smallest topologies. Therefore, be-
low we provide a set of approximation algorithms, facilitating to
obtain a reasonable link cost setting in larger networks as well.
In fact, we present a complete family of heuristics, each member
of the family having distinct efficiency, running-time, and mem-
ory-requirements. This facilitates for picking the best heuristics
for the particular requirements.

We chose the simulated annealing probabilistic metaheuristic
as the main framework to fund our approximation algorithms onto
[39], and within this framework we obtained different heuristics
by fine-tuning certain aspects and parameters of the framework.
The basic version of the simulated annealing metaheuristic oper-
ates as follows: starting from a randomly chosen initial cost c,
choose randomly a neighbor c0 ‘‘nearby’’ c. Here, two cost settings
are nearby if they differ at exactly one link by exactly 1. If the new
cost c0 provides larger LFA coverage, then it is unconditionally ac-
cepted. On the other hand, if c0 is worse then it is still accepted with
a certain probability, depending on a system parameter called the
temperature. The temperature is set so that from an initial, rela-
tively high value it gradually decreases as the algorithm proceeds,
ensuring that the system easily escapes from local optima in the
beginning, while it will increasingly tend to get stuck in a good
quality optimum eventually. The iteration terminates if the tem-
perature reaches a certain threshold or the algorithm could not im-
prove the LFA coverage after a certain number of steps.

The pseudo-code for the approximation framework is given in
Algorithm 1. Note that the pseudo-code works the same for the
link-protecting and the node-protecting case, therefore we below
give a generic treatment suitable to handle both cases. The input
to the heuristic is the graph GðV ; EÞ, initial temperature T0 and
maximum allowed cost Cmax, and the output is the final cost c.

Algorithm 1. Heuristic LFA cost optimization framework

c random costðCmaxÞ; T T0

whileT > 0 and gðG; cÞ < 1
c0 choose costðcÞ
Dg gðG; cÞ � gðG; c0Þ

if accept costðDg; TÞthen
c c0

end if
T T � 1

end while

The above framework uses a couple of procedures, yet to be
specified.

� random costðCÞ: this procedure returns a random initial cost in
the range f1; . . . ; Cmaxg for each link. Throughout our numerical
studies, we used uniformly distributed initial costs.
� choose costðcÞ: this procedure selects a cost ‘‘nearby’’ c. Let

neighðcÞ denote the set of costs that differ from c at one link
by 1. We used two different cost selection policies: we either
chose a nearby cost randomly (choose random costðcÞ), or we
chose greedily the cost setting that improved LFA coverage
the most (choose greedy costðcÞ), i.e, sets c0 according to
arg maxq2neighðcÞgðG; qÞ.
� accept costðDg; TÞ: this procedure guides the way the new cost

setting c0 is accepted. Again, we used two different policies. Both
policies share the property that a cost that improves LFA cover-
age is accepted unconditionally. In addition, the policy
proportional testðDg; TÞ accepts the new cost even if worse with
probability proportional to the temperature. Correspondingly,
proportional testðDg; TÞ returns true if Dg < 0 or
T > randomðT0Þ. Here, the procedure randomðxÞ returns a uni-
formly distributed random sample from ½0; x�. The so called
Metropolis-test (metropolis testðDg; TÞ), on the other hand,
returns true if Dg < 0 or randomð1Þ < expð�Dg=TÞ.

A useful consequence of defining our approximation framework in
the above general form is that different choices for the input param-
eters as well as the selection of the procedures choose costðcÞ and
accept costðDg; TÞ yield different heuristics, with drastically varying
performance and running time. For instance, setting the initial tem-
perature low causes faster termination but reduces the probability
of finding the global optimum, since this allows the algorithm to ex-
plore only a limited domain of the problem space. Furthermore,
picking the choose greedy costðcÞ procedure for selecting the best
candidate nearby cost has the potential to rapidly improve the costs
initially, but might cause overly long running time due to having to
check LFA coverage for each neighboring cost in each iteration. The

652 L. Csikor et al. / Computer Communications 36 (2013) 645–655
choice for the accept costðDg; TÞ procedure, on the other hand,
influences the proneness of the heuristics to get stuck in local
optima.

We also experimented with several small modifications of the
above basic approximation framework, in an attempt to obtain
good solutions [39].

� Tabu lists are useful to preclude the iteration from oscillating
between two ore more cost settings, through prohibiting the
algorithm to revisit a certain number of previously visited
solutions.
� Restarting allows the iteration to be restarted from an earlier

good solution in the case when the algorithm gets stuck in a
local optimum. Note that no temperature reduction is made
during the restart.
� Quantum tunneling is similar to restarting, but instead of jump-

ing back to a previous solution we rather jump to another ran-
dom solution. Again, the intention is to avoid sticking in local
optima. In our implementation, if after a configurable number
of iterations LFA coverage could not be improved then the heu-
ristics set each link cost randomly up or down by the average
link cost. This will change at least one shortest path in the net-
work, and so the iteration transitions into a different domain of
the problem space.

The running time of the heuristics principally depends on the choice
of the choose costðcÞ procedure. With greedy selection, the com-
plexity is OðT0mn3Þ, dominated by the need to evaluate gðG; qÞ
(needing Oðn3Þ steps) in each iteration for each 2m neighbor q of
the current cost c. With selecting the choose random costðcÞ proce-
dure, on the other hand, complexity decreases to OðT0n3Þ, as LFA
coverage needs to be evaluated in each iteration only once. This,
however, comes with a substantial drop in efficiency, as evidenced
by the numerical results presented next.

Finally, we call the attention to an appealing aspect of our heu-
ristic framework. In particular, the framework is easy to adapt for
different operational requirements not explicitly addressed in the
paper. For instance, the heuristics are completely neutral to
whether the underlying graph representation is undirected or di-
rected (a case more relevant to IP networks), or whether link costs
are symmetric or asymmetric. The framework does not even re-
quire link costs to be integral. Further operational issues, like traffic
engineering concerns, suppressing equal cost shortest paths [36],
or considering broadcast LANs, etc., are also easy to incorporate
into the optimization algorithms through tuning the objective
function. The same applies to more elaborate failure models, like
multiple failures, shared risk link groups, etc. Discovering the
breadth of these options is beyond the scope of this paper.
Table 2
LFA cost optimization in random topologies.

Num n m Lower/Upper gðG; coptÞ g�gr

1⁄ 7 11 0.278/1 1 0.976
2 8 9 0.095/0.571 0.536 0.536
3⁄ 8 13 0.214/1 1 0.982
4 7 11 0.278/1 1 1
6 8 9 0.143/0.571 0.571 0.571
9 7 11 0.208/1 0.952 0.952
10 8 11 0.114/1 0.857 0.857
11 8 10 0.143/0.857 0.75 0.75
12 8 9 0.095/0.571 0.429 0.429
13 8 11 0.143/1 0.911 0.911
14 8 11 0.19/1 0.821 0.821
15 8 11 0.19/1 0.946 0.946
16 7 8 0.111/0.667 0.5 0.5
17 8 14 0.2/1 1 1
18 8 11 0.114/1 0.714 0.714
19 8 9 0.143/0.571 0.482 0.482
20 8 10 0.143/0.857 0.679 0.679
6. Numerical evaluations

In the course of our numerical studies, first we were curious as
to how close the approximate LFA cost optimization algorithms
can get to the optimum. Therefore, we implemented the ILP (6)–
(8), (), (), (10), (11) and the approximation framework described
in Section 5. Below, only results for the greedy cost selection rule
(choose greedy costðcÞ) and the temperature-proportional accep-
tance rule (proportional testðDg; TÞ) are given, with a tabu list of
size 20, no restarting and no quantum tunneling, as this proved
most efficient in comparison studies to be discussed later. The sim-
ulated annealing procedure was executed 500 times consecutively
(T0 ¼ 150;Cmax ¼ 20) and the cost c� that attained the highest LFA
coverage was selected. Below, we only give the results for the link-
protecting case.
We found that about the largest non-trivial graphs for which
the ILP can be solved to optimality are of 8 nodes. Unfortunately,
very few real topologies of this small size are available in the liter-
ature. Thus, the first round of the evaluations were run on Erd}os–
Rényi random graphs (n ¼ 8, expected node degree 3). Out of the
20 random graphs generated, 17 was 2-connected, and results
are only given for these instances. Table 2 gives some characteris-
tics of the graphs (number of nodes n, and number of links m); the
theoretical lower and upper bounds on LFA coverage (as of Lemma
2 and Lemma 3); and the actual LFA coverage gðG; coptÞ for the costs
copt obtained by the ILP and the above customized greedy version
of the approximation algorithm (g�gr). We observe that from the
17 experiments only in 2 cases the approximation did not find
the optimum (these experiments are marked by an asterisk in Ta-
ble 2), and the difference is at most 2–3% in LFA coverage. This
indicates that in small networks the simulated-annealing-based
heuristics perform quite efficiently. Additionally, we found that
the theoretical bounds provide a solid estimate on the LFA
coverage.

In the second round, we examined the performance of the dif-
ferent approximate LFA cost optimization algorithms we proposed
in the previous section in larger real network topologies, where the
ILP could not be solved to optimality. First, we deal with the link-
protecting case, while node protection will be discussed
subsequently.

We used inferred ISP data maps from the Rocketfuel dataset
[40] (AS1221, AS1239, AS1755, AS3257, AS3967 and AS6461). We
obtained POP-level maps by collapsing the topologies so that nodes
correspond to cities and we eliminated leaf-nodes (this preprocess-
ing method was suggested in [41]). These networks come with in-
ferred link costs (these costs are needed to compute the ‘‘default’’
LFA coverage gðG; cÞ of the network). We also chose some network
topologies from [42], namely, the Abilene, Italy, Germany, NSF and
AT&T networks and the 50 node extended German backbone
(Germ_50). Unfortunately, except for the last network no valid link
costs were available, so we set each cost to 1. We also chose some
representative ISP topologies from [43], in particular, the Arnes,
Deltacom, Geant, and the InternetMCI topologies. Link costs were
set inversely proportional to the link capacities (this setting is rec-
ommended by Cisco, see documentation on ospf auto-cost in
[44]). Additionally, we also ran the evaluations on some artificial
topologies with uniform costs. In particular, Mn are the Möbius lad-
der graphs of n nodes as discussed in Section 5.

The particular approximation algorithms we used were as fol-
lows. First, we chose the ‘‘textbook’’ version of the simulated
annealing algorithm, with random cost selection

Fig. 3. Final LFA coverage for some select topologies.

L. Csikor et al. / Computer Communications 36 (2013) 645–655 653
(choose random costðcÞ) and the Metropolis-test for cost accep-
tance (metropolis testðDg; TÞ), with a tabu list of size 20 and differ-
ent customized settings for the restarting and quantum tunneling
thresholds. The notation g� will be used to denote the LFA coverage
as provided by this textbook version of the heuristics. In particular,
g�Q¼q will signify the version with the quantum tunneling threshold
set to q (i.e., after q unsuccessful trials the algorithm jumps to a
new cost set). We used the setting q ¼ 1; q ¼ 10 and q ¼ 20. In
addition, g�R¼r denotes the LFA coverage by setting the restarting
threshold in a similar vein. Evaluations were run for r ¼ 2,
r ¼ 10, and r ¼ 20. Finally, we also executed the greedy version
as used in the first simulation round (choose greedy costðcÞ,
proportional testðDg; TÞ, tabu list of size 20, no restarting and no
quantum tunneling). Results are again marked by g�gr. For each
topology, the algorithms were executed 1000 times
(T0 ¼ 1000;Cmax ¼ 20) and the best cost c� was selected. There
was only one topology on which we could solve the ILP to optimal-
ity: AS1221. For this particular network, each of the approximation
algorithms could attain the ILP optimum (gðG; coptÞ ¼ 0:833).

Detailed results of link-protecting mode are presented in
Table 3. The columns mean (in the order of appearance): the char-
acteristics of the topologies (name, number of nodes n and edges
m, and the average node degree D); the LFA coverage obtained by
the original link cost setting for the graphs gðG; cÞ; and the LFA cov-
erage obtained by the different approximation algorithms. We also
highlight the results for some select topologies in Fig. 3.

Our observations are as follows. First, we found that the LFA
coverage produced by the approximate algorithms is usually sig-
nificantly higher (about 90% or more in the link-protecting case)
than the LFA coverage produced by the network’s original cost
setting (around 70% on average). The improvement almost always
exceeds 7%, but in many cases it amounts to more than 20–25%
(e.g., AS3967, Abilene, or the German backbone). This suggests that
optimizing costs specifically for LFA usually attains significant
improvement in network resilience. The improvement is especially
significant for the artificial networks. We also found that the den-
ser the network, the higher the LFA coverage. It seems that net-
works with an average node degree exceeding about 3:5 lend
themselves especially well to LFA cost optimization (AS1239,
AS1755, AS3257, AS6461, AT&T, Germ_50): in these networks even
the default cost settings yield a higher than 80% LFA coverage and
our cost optimization tool can bring these networks well beyond
95% and close to 100% in many cases. Networks of average node
degree of 3 are still amenable to LFA, but when the degree falls be-
Table 3
Link-protecting results for the LFA cost optimization heuristics in real and artificial topolo

Name n m D gðG; cÞ g� g�Q¼1

AS1221 7 9 2.57 0.809 0.833 0.83
AS1239 30 69 4.60 0.873 0.958 0.95
AS1755 18 33 3.66 0.872 0.983 0.98
AS3257 27 64 4.74 0.923 0.997 0.99
AS3967 21 36 3.42 0.785 0.971 0.97
AS6461 17 37 4.35 0.933 1 0.99
Abilene 12 15 2.5 0.56 0.674 0.67
Arnes 41 57 2.78 0.623 0.702 0.70
AT&T 22 38 3.45 0.822 0.982 0.98
Deltacom 113 161 2.85 0.577 0.654 0.65
Geant 37 55 2.97 0.69 0.74 0.74
Germ_50 50 88 3.52 0.9 0.929 0.93
Germany 17 25 2.94 0.695 0.9 0.89
InternetMCI 19 33 3.47 0.904 0.932 0.93
Italy 33 56 3.39 0.784 0.926 0.92
NSF 26 43 3.3 0.86 0.949 0.95
M6 6 9 3 0.4 1 1
M10 10 15 3 0.444 0.922 0.92
M18 18 27 3 0.470 0.882 0.87
M30 30 45 3 0.482 0.889 0.88
low 3 the chances of getting a high LFA coverage rapidly vanish. For
sparser networks (like the Abilene topology), the final LFA coverage
gðG; c�Þ hardly reached 70%. These observations are in line with our
theoretical analysis in Section 4. Note, however, that node degree
alone is not sufficient to assess the extent to which LFA can protect
a network, as there are topologies (the Möbius ladder graphs) that
have small average degree of 3 but complete link-protecting LFA
coverage over some appropriately chosen costs. It seems that LFA
cost optimization is most difficult when the degree is about 3.

Second, we observe that for large Möbius ladder graphs the
approximation could not get closer than 10% to the optimum
(which we know is gðG; coptÞ ¼ 1 in this case). This indicates that
in larger topologies the efficiency of the heuristics we identified
in small networks might not be present.

Third, we find that the approximation algorithms work roughly
similarly. In particular, Fig. 4 compares the LFA coverage of the dif-
ferent heuristics, when taking the textbook simulated annealing
heuristics as the basis for the comparison. We observe that the best
performance is attained by the greedy version consistently. This is
not surprising, considering the more elaborate (and more time-
consuming) cost selection rule. In addition, quantum tunneling
seems to work better for larger thresholds, while restarting pro-
duces consistently better results for smaller thresholds. The differ-
ences in the eventual LFA coverage between the different
gies.

g�Q¼10 g�Q¼20 g�R¼2 g�R¼10 g�R¼20 g�gr

3 0.833 0.833 0.833 0.833 0.833 0.833
8 0.959 0.959 0.96 0.959 0.958 0.963
3 0.983 0.983 0.983 0.98 0.98 0.993
5 0.998 0.997 0.997 0.997 0.997 1
3 0.973 0.966 0.976 0.966 0.971 0.983
6 0.996 0.996 1 1 1 1
4 0.674 0.674 0.674 0.674 0.674 0.674
4 0.707 0.704 0.706 0.703 0.7 0.709
4 0.982 0.98 0.98 0.978 0.984 0.987
8 0.652 0.659 0.652 0.661 0.651 0.662
2 0.745 0.743 0.74 0.741 0.737 0.76
1 0.935 0.93 0.932 0.93 0.939 0.966
3 0.893 0.904 0.904 0.904 0.9 0.911
2 0.932 0.932 0.932 0.932 0.932 0.932
8 0.922 0.932 0.927 0.93 0.922 0.944
5 0.964 0.95 0.958 0.956 0.955 0.977

1 1 1 1 1 1
2 0.933 0.933 0.922 0.933 0.922 1
5 0.885 0.885 0.882 0.872 0.888 0.905
3 0.886 0.886 0.889 0.889 0.888 0.904

Fig. 4. Final LFA coverage obtained by different heuristics compared to the textbook
version.

Fig. 5. Execution time for different heuristics in hours.

Table 4
Node-protecting results for the LFA cost optimization heuristics in real and artificial topol

Name n m D gðG; cÞ g� g�Q¼

AS1221 7 9 2.57 0.452 0.523 0.52
AS1239 30 69 4.60 0.757 0.886 0.89
AS1755 18 33 3.66 0.764 0.895 0.88
AS3257 27 64 4.74 0.726 0.863 0.87
AS3967 21 36 3.42 0.642 0.84 0.83
AS6461 17 37 4.35 0.738 0.845 0.83
Abilene 12 15 2.5 0.515 0.606 0.59
Arnes 41 57 2.78 0.359 0.469 0.48
AT&T 22 38 3.45 0.58 0.783 0.8
Deltacom 113 161 2.85 0.488 0.559 0.57
Geant 37 55 2.97 0.41 0.572 0.59
Germ_50 50 88 3.52 0.827 0.829 0.81
Germany 17 25 2.94 0.562 0.731 0.72
InternetMCI 19 33 3.47 0.704 0.783 0.76
Italy 33 56 3.39 0.57 0.768 0.75
NSF 26 43 3.3 0.633 0.83 0.79
M6 6 9 3 0.444 0.922 0.88
M10 10 15 3 0.47 0.81 0.8
M18 18 27 3 0.482 0.812 0.80
M30 30 45 3 0.4 1 1

654 L. Csikor et al. / Computer Communications 36 (2013) 645–655
heuristics, however, are in the order of mere percents. We note,
however, that minuscule differences in the LFA coverage can mean
dozens of more protected source-destinations in reality. This is be-
cause the normalizing factor nðn� 1Þ in (3) can become very large
in big networks. For instance, in the Deltacom topology the greedy
heuristics covered 2367 source-destination pairs while the others
reached less than 2300.

Last but not least, the execution time for 1000 rounds of the dif-
ferent heuristics is depicted in Fig. 5 in a logarithmic scale. As ex-
pected, for the wins in performance with the greedy version of the
heuristics we pay by significantly increasing execution time. This is
because, as mentioned previously, choosing the best neighbor in
every step requires 2m times more evaluations of the LFA coverage
metric than selecting one randomly. Note that these execution
times are representative to the offline phase of LFA cost optimiza-
tion, which is usually performed only once for the lifetime of the
network before the final deployment, and in no way affect the
real-time requirements of finding loop-free alternates in the online
phase (which remains below 50 ms as required). Therefore, we do
not consider execution times to be a particularly pressing issue in
LFA cost optimization. Finally, we mention that, curiously, running
1000 rounds of the heuristics is usually unnecessary, because the
best solutions were realized after 200 rounds in each case.

We repeated the simulations for the node-protecting case as
well (see Table 4). The observations are essentially the same as
in the link-protecting case, just the numeric values seem some-
what smaller. We found that the initial node-protecting LFA cover-
age was 57% on average which the algorithms could improve by
about 10–20%, so that eventual the LFA coverage was in the range
of 75–80%. In some cases, however, the heuristics could reach more
than 25% of improvement (for instance, this is the case for the
AS3257 topology). Again, the greedy heuristic is consistently the
most effective, and restarting and quantum tunneling seem worth-
while extensions to textbook simulated annealing.

In summary, our results suggest that most real network topolo-
gies, which are usually richly connected and highly redundant,
lend themselves readily to LFA cost optimization, to the point that
almost perfect link-protecting LFA coverage can be achieved in
many cases. For fast execution time the textbook simulated
annealing version with a reasonable quantum tunneling and
restarting threshold seems most appealing, whereas the greedy
version is the best choice when the aim is to find the highest qual-
ity link costs.
ogies.

1 g�Q¼10 g�Q¼20 g�R¼2 g�R¼10 g�R¼20 g�gr

3 0.523 0.523 0.523 0.523 0.523 0.523
6 0.889 0.886 0.894 0.893 0.882 0.937
5 0.888 0.885 0.882 0.882 0.911 0.941
7 0.881 0.871 0.871 0.873 0.87 0.938
8 0.838 0.847 0.847 0.857 0.835 0.897
8 0.83 0.841 0.852 0.841 0.838 0.886
8 0.606 0.606 0.606 0.606 0.606 0.606
2 0.484 0.478 0.471 0.472 0.486 0.49

0.796 0.783 0.779 0.781 0.781 0.82
1 0.566 0.568 0.567 0.564 0.558 0.581
0 0.585 0.581 0.577 0.573 0.57 0.622
6 0.807 0.815 0.829 0.822 0.82 0.86

0.709 0.713 0.713 0.705 0.705 0.727
6 0.766 0.777 0.78 0.777 0.769 0.809
4 0.748 0.75 0.764 0.754 0.754 0.803
6 0.806 0.815 0.829 0.807 0.836 0.866
8 0.9 0.9 0.9 0.911 0.9 0.966

0.807 0.81 0.816 0.813 0.81 0.849
9 0.809 0.81 0.809 0.817 0.812 0.833

1 1 1 1 1 1

L. Csikor et al. / Computer Communications 36 (2013) 645–655 655
7. Conclusions

In this paper, we have assessed the possibilities of improving
fast resilience in operational IP networks using the Loop-Free
Alternates IPFRR technique. The motivation for choosing LFA over
its alternatives is its simplicity, easy deployability, and availability
in IP routers. We presented new tools to quickly estimate LFA fail-
ure case coverage both in the link-protecting and the node-protect-
ing cases, and we sought ways to improve it by carefully adjusting
IGP link costs. We showed that this problem is NP-complete and
we gave an Integer Linear Program to obtain an exact solution.
As our exact algorithm only works in small networks, we proposed
a family of simulated-annealing-based approximations with differ-
ent tunable performance and execution time parameters. Our heu-
ristics could achieve significant boost in LFA coverage in many real-
world network topologies, to the point that in some cases close to
perfect protection could be guaranteed by LFA. Considering that
LFA is just a router-configuration command away in many modern
IP networks, we believe that these results have huge practical rel-
evance. Nevertheless, we also found that some topologies are less
amenable to LFA cost optimization. Future work involves combin-
ing the LFA network optimization tools we gave in [21] and the
algorithms presented herein to improve IP-level fast resilience in
such notorious network topologies.

Acknowledgements

G.R. was supported by the János Bolyai Fellowship of the Hun-
garian Academy of Sciences. J.T. was supported by the Magyary
Zoltán program. The project was supported by TÁMOP 4.2.2.B-10/
1-2010-0009 grant.

References

[1] J. Moy, OSPF Version 2, RFC 2328, April 1998.
[2] R. Callon, Use of OSI IS-IS for routing in TCP/IP and dual environments, RFC

1195 (December 1990).
[3] P. Francois, C. Filsfils, J. Evans, O. Bonaventure, Achieving sub-second IGP

convergence in large IP networks, SIGCOMM Comput. Commun. Rev. 35 (3)
(2005) 35–44.

[4] M. Shand, S. Bryant, IP fast reroute framework, RFC 5714 (2010). January.
[5] G. Enyedi, G. Rétvári, T. Cinkler, A novel loop-free IP fast reroute algorithm, in:

EUNICE, 2007, pp. 111–119.
[6] I. Hokelek, M. Fecko, P. Gurung, S. Samtani, S. Cevher, J. Sucec, Loop-free IP fast

Reroute using local and remote LFAPs, Internet Draft (2008). February.
[7] A. Li, X. Yang, D. Wetherall, SafeGuard: safe forwarding during route changes,

in: ACM CoNEXT, 2009, pp. 301–312.
[8] A. Kvalbein, A.F. Hansen, T. Čičic, S. Gjessing, O. Lysne, Multiple routing

configurations for fast IP network recovery, IEEE/ACM Trans. Netw. 17 (2)
(2009) 473–486, http://dx.doi.org/10.1109/TNET.2008.926507.

[9] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, C.-N. Chuah, Proactive vs reactive
approaches to failure resilient routing, in: INFOCOM, 2004.

[10] S. Bryant, C. Filsfils, S. Previdi, M. Shand, IP fast reroute using tunnels, Internet
Draft (2007). November.

[11] S. Bryant, M. Shand, S. Previdi, IP fast reroute using not-via addresses, Internet
Draft (2010). March.

[12] G. Enyedi, P. Szilágyi, G. Rétvári, A. Császár, IP fast ReRoute: lightweight not-
via without additional addresses, in: INFOCOM Mini-conf, 2009, pp. 2771–
2775.

[13] A. Li, P. Francois, X. Yang, On improving the efficiency and manageability of
NotVia, in: ACM CoNEXT, 2007, pp. 1–12.
[14] A. Atlas, A. Zinin, Basic specification for IP fast reroute: loop-free alternates,
RFC 5286 (2008).

[15] C. Reichert, T. Magedanz, Topology requirements for resilient IP networks, in:
MMB, 2004, pp. 379–388.

[16] K.-W. Kwong, L. Gao, R. Guerin, Z.-L. Zhang, On the feasibility and efficacy of
protection routing in IP networks, in: INFOCOM 2010, long version appears as
Tech. Rep. 2009, University of Pennsylvania, 2010, pp. 1–9.

[17] P. Francois, O. Bonaventure, An evaluation of IP-based fast reroute techniques,
in: ACM CoNEXT, 2005, pp. 244–245.

[18] S. Previdi, IP fast ReRoute technologies, APRICOT (2006).
[19] M. Gjoka, V. Ram, X. Yang, Evaluation of IP fast reroute proposals, in: IEEE

Comsware, 2007, pp. 710–718.
[20] C. Filsfils et al., LFA applicability in SP networks, Internet Draft (2010). March.
[21] G. Rétvári, J. Tapolcai, G. Enyedi, A. Császár, IP fast ReRoute: loop free

alternates revisited, in: INFOCOM, 2011, pp. 2948–2956.
[22] G. Rétvári, L. Csikor, J. Tapolcai, G. Enyedi, A. Császár, Optimizing IGP link costs

for improving IP-level resilience, in: Proceedings International Workshop on
Design Of Reliable Communication Networks (DRCN), 2011, pp. 62–69.

[23] H.T. Viet, P. Francois, Y. Deville, O. Bonaventure, Implementation of a traffic
engineering technique that preserves IP fast Reroute in COMET, in: Rencontres
Francophones sur les Aspects Algorithmiques des Telecommunications,
Algotel, 2009.

[24] M. Menth, M. Hartmann, D. Hock, Routing optimization with IP fast Reroute,
Internet Draft (2010). July.

[25] S. Iyer, S. Bhattacharyya, N. Taft, C. Diot, An approach to alleviate link overload
as observed on an IP backbone, in: INFOCOM, 2003.

[26] M. Menth, M. Hartmann, R. Martin, T. Čiči’c, A. Kvalbein, Loop-free alternates
and not-via addresses: a proper combination for IP fast reroute?, Comput
Netw. 54 (8) (2010) 1300–1315.

[27] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, C.-N. Chuah, Failure inferencing
based fast rerouting for handling transient link and node failures, in:
INFOCOM, 2005.

[28] G. Schollmeier, J. Charzinski, A. Kirstadter, C. Reichert, K. Schrodi, Y. Glickman,
C. Winkler, Improving the resilience in IP networks, in: Workshop on High
Performance Switching and Routing HPSR 2003, 2003, pp. 91–96.

[29] A. Csaszar, G. Enyedi, S. Kini, Ip fast re-route with fast notification, Internet
Draft (2011). March.

[30] C. Systems, Cisco IOS XR routing configuration guide, Release 3.7 (2008).
[31] J. Networks, Junos 9.6 routing protocols configuration guide, 2009.
[32] B. Fortz, J. Rexford, M. Thorup, Traffic engineering with traditional IP routing

protocols, IEEE Commun. Mag. 40 (10) (2002) 118–124.
[33] G. Rétvári, R. Szabó, J.J. Biŕó, On the representability of arbitrary path sets as

shortest paths: Theory, algorithms, and complexity, in: Lecture Notes in
Computer Science: Proceedings of the Third International IFIP-TC6 Networking
Conference, Athens, Greece, 2004, pp. 1180–1191.

[34] P. Pan, G. Swallow, A. Atlas, Fast reroute extensions to RSVP-TE for LSP tunnels,
RFC 4090 (2005).

[35] G. Swallow, S. Bryant, L. Andersson, Avoiding equal cost multipath treatment
in MPLS networks, RFC 4928 (2007). June.

[36] M. Thorup, M. Roughan, Avoiding ties in shortest path first routing, aT&T,
Shannon Laboratory, Florham Park, NJ, Technical Report, <http://
www.research.att.com/mthorup/PAPERS/tiesospf.ps>, 2001.

[37] R. Ahuja, T. Magnanti, J. Orlin, Network Flows: Theory Algorithms and
Applications, Prentice-Hall, New Jersey, 1993.

[38] G. Dahl, M. Stoer, A cutting plane algorithm for multicommodity survivable
network design problems, INFORMS J. Comput. 10 (1996) 1–11.

[39] M. Pióro, D. Medhi, Routing, Flow, and Capacity Design in Communication and
Computer Networks, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2004.

[40] R. Mahajan, N. Spring, D. Wetherall, T. Anderson, Inferring link weights using
end-to-end measurements, in: ACM IMC, 2002, pp. 231–236.

[41] D. Applegate, E. Cohen, Making intra-domain routing robust to changing and
uncertain traffic demands: understanding fundamental tradeoffs, in: ACM
SIGCOMM, 2003, pp. 313–324.

[42] SNDlib, Survivable fixed telecommunication network design library, <http://
sndlib.zib.de>.

[43] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The internet
topology zoo, <http://www.topology-zoo.org>.

[44] Cisco Systems, Cisco IOS Release 12.0, Network Protocols Configuration Guide,
2011.

http://dx.doi.org/10.1109/TNET.2008.926507
http://www.research.att.com/mthorup/PAPERS/tiesospf.ps
http://www.research.att.com/mthorup/PAPERS/tiesospf.ps
http://sndlib.zib.de
http://sndlib.zib.de
http://www.topology-zoo.org

	Optimizing IGP link costs for improving IP-level resilience with Loop-Free Alternates
	1 Introduction
	2 Related works
	3 Model and problem formulation
	3.1 Loop-Free Alternates
	3.2 LFA cost optimization: problem formulation

	4 LFA failure coverage analysis
	5 LFA cost optimization
	5.1 The potential of LFA cost optimization
	5.2 Computational complexity
	5.3 An exact algorithm
	5.4 Approximate algorithms

	6 Numerical evaluations
	7 Conclusions
	Acknowledgements
	References

