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Abstract—Survivable routing is crucial in backbone networks
to ensure connectivity, even during failures. At network design,
groups of network elements prone to potential failure events are
identified. These groups are referred to as Shared Risk Link
Groups (SRLGs), and if they are a set of links intersected by
a connected region of the plane, we call them regional-SRLGs. A
recent study has presented a polynomial-time algorithm for find-
ing a maximum number of regional-SRLG-disjoint paths between
two given nodes in a planar topology, with the paths being node-
disjoint. However, existing algorithms for this problem are not
practical due to their runtime and implementation complexities.

This paper investigates a more general model, the maximum
number of non-crossing, regional-SRLG-disjoint paths problem.
It introduces an efficient and easily implementable algorithmic
framework, leveraging an arbitrarily chosen shortest path finding
subroutine for graphs with possibly negative weights. Depending
on the subroutine chosen, the framework improves the previous
worst-case runtime complexity, or can solve the problem w.h.p.
in near-linear expected time. The proposed framework enables
the first additive approximation for a more general NP -hard
version of the problem, where the objective is to find the
maximum number of regional-SRLG-disjoint paths. We validate
our findings through extensive simulations.

I. INTRODUCTION

For a given graph G = (V ,E) with undirected topology,
finding disjoint paths between two nodes s, t is the central
algorithmic problem for any backbone network mechanism
that aims to maintain connectivity in the event of a failure.
Currently, the most widely used algorithm for this is to find
edge- or node-disjoint paths, which is perfect for mechanisms
dealing with single-point failures. However, extensive research
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[1]–[10] has revealed that network failures can manifest as
multi-point failures, where a significant physical region ex-
periences simultaneous equipment outages triggered by catas-
trophic events such as earthquakes, hurricanes, tsunamis, tor-
nadoes, and more. These multi-point failures are often called
regional failures or regions for brevity. Another widely used
terminology is the Shared Risk Link Group (SRLG), which is
more general and can be any set of edges subject to common
failures [11]–[17]. We assumed that the list of regions (or
SRLGs) R ⊆ 2E is also part of the input, which was already
identified during the network design phase based on some
historical data and exploration of network vulnerabilities. Two
st-paths are R-disjoint if there is no edge set in R intersecting
both paths.

The planarity of the network G is also assumed in our
approach, similarly to the work presented in [18]. To protect
sensitive information related to the exact location of network
equipment, which is crucial for military and economic rea-
sons, we do not require knowledge of the precise positions.
However, we are provided with the dual representation of the
planar topology graph, denoted as G∗ = (V ∗,E∗) and a one-
to-one mapping of primal and dual edges, see Fig. 3a. In the
dual representation, each face f in the primal graph G = (V ,E)
corresponds to a node f ∗ ∈ V ∗ in the dual graph. Similarly,
each edge e that separates faces f1 and f2 in G corresponds
to a dual edge e∗ = ( f ∗

1 , f ∗
2 ) ∈ E∗ in G∗, and this mapping is

also given. The term “region” emphasizes that these edge sets
can be the intersection of E with a connected subset U of
the plane, where the nodes u, v of an edge uv are considered
as part of uv . This condition can be captured accurately by
assuming that for each region r ∈ R, the corresponding dual
edges form a connected subgraph in G∗.

Even with the above assumptions, finding the maximum
number of region-disjoint st-paths problem is NP -hard [19].
This also holds for more restricted failure models, such
as circular disk failures or line segment failures. To have
a polynomial-time solvable problem, [18] added one last
assumption that the obtained paths should be node-disjoint
as well, or in other words, node failures should also be
listed as regional failures. This implicitly also holds when
circular disk failures are considered [20]. Both [18], [20] have
presented polynomial-time algorithms to address the respective
problems. While their worst-case complexity is reasonable,
we argue they may not be suitable for practical applications.
Both algorithms consist of two steps: firstly, searching for an
appropriate starting path, and secondly, iteratively extending
the solution with more region-disjoint paths. The second



step is relatively straightforward; the main theoretical and
implementation challenges lie in the first step. The algorithms
proposed in [18], [20] perform well only when more than two
region disjoint paths exist, which in our experience, is rare
in practice. The study in [20] offered an algorithm relying
on the topological properties of the graph (e.g. the exact
location of the nodes) of solving the first step, which was
further generalized in [18] such that knowing the dual graph
is sufficient. Nonetheless, the first step remains challenging to
implement, and it is not surprising that it was omitted in the
implementation provided with [18]. Instead, a simple heuristic
approach was employed, leading to satisfactory performance
for many practical instances of the problem.

The primary contribution of this paper is to present a
fundamentally different approach that bypasses the challenging
first step altogether. Instead, we directly solve the problem
using an auxiliary graph, the so-called regional dual graph, as
depicted in Figure 3. This alternative approach offers a novel
perspective and overcomes the complexities associated with
the initial step of the previous algorithms. The main results of
the paper are the followings:

• We generalize the problem of maximum region-disjoint
st-paths, and instead of assuming disjointness of nodes,
we just assume that the paths cannot cross, see Fig. 1.
Our model generalizes all previous tractable ones men-
tioned in §VI. We give a polynomial-time algorithm for
this problem. Our method is significantly different from
previous approaches for similar problems, as it uses a dual
technique. It is also easy to implement, since it only needs a
shortest path algorithm on graphs with negative weights as
a subroutine. We provide an efficient C++ implementation
that can solve networks with 10000 nodes in < 1 second.

• We prove that the optimum of the non-crossing model
above gives a tight 2-additive approximation for the NP -
hard maximum region-disjoint paths problem in general
(Thm. 3), which is better than the multiplicative approxi-
mation given in [19].

The paper is organized as follows: In §II, we describe the
investigated problems and some necessary tools. In §III, we
present our algorithm for the maximum number of region-
disjoint, non-crossing st-paths problem and analyze its run-
ning time in §IV. In §V we give an additive approximation
for the general case. In §VI, we summarize previous results
and techniques. In §VII we provide our numerical evaluations,
and finally §VIII concludes our work.

II. PROBLEM FORMULATIONS, MAIN RESULTS AND
ALGORITHM

The input of the problem is a planar graph G = (V ,E) with
vertex set V and edge set E . Let the dual of G be denoted as
G∗, which consists of vertices V ∗ and edges E∗. Each edge
e in E corresponds to an edge in the dual graph G∗, which is
denoted as e∗. An effcient way of storing such input graph is
if the incident edges for every node is given clockwise order,
called a rotation system [21].
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(a) Non-crossing paths

s

t

(b) Crossing paths

Fig. 1. Example on non-crossing and crossing paths. Edges drawn with dashed
and solid lines refer to the two different paths.

We will refer to nodes of the dual graph as faces. For a
subset of edges X ⊆ E let X ∗ denote the subset of dual edges
corresponding to X . For a set of edges X ⊆ E let V (X ) denote
the set of nodes incident to at least one edge in X , and let
G[X ] denote the graph induced by X on G: G[X ] = (V (X ), X ).

With these notations, we say a subset of edges R ⊆ E is a
region, if G∗[R∗] is a connected graph. In other words, the
duals of the edges in a region form a connected subgraph in the
dual G∗ (e.g., link set {t a, ad ,be} in Fig. 3 a), depicted with
dashdotted dual edges). It is easy to see that any connected
disaster area in the plane can be represented by a region.

Further, given a set R of regions, two st-paths are said to
be region-disjoint, if there is no region R ∈ R intersecting
both paths (see Fig. 3). Finally, given a set R of regions, for
a given pair of nodes s, t ∈ V , a set of regions X ⊆ R is a
regional st−cut if ∪R∈X R is an edge set separating s and t .
E.g., in Fig. 3 a), the purple-and-dashed region does form a
regional st-cut with the blue-and-densely-dashed region, but
does not form one with the green-and-dashdotted region. For
a set of regions R let ∥R∥ :=∑

R∈R |R|.
A. Problem Statements and Main Results

Next, we define the two problems we are dealing with, the
first one being the more general one.

Problem 1: Maximal number of region-disjoint st-
paths
Input: A planar graph G = (V ,E), rotation system,

nodes s, t ∈V , regions R ⊂ 2E

Output: A maximum number of region-disjoint
st-paths P1,P2 . . . ,Pk

Unfortunately, Problem 1 is NP -hard [19, Thm. 6], and
only a multiplicative approximation was known to its optimum
[19]. In this paper, we give the first algorithmic framework that
enables to efficiently compute a nearly optimal solution of the
problem. We may assume that every edge is part of at least
one region (otherwise, it can be contracted in the input).

Theorem 1. Let a planar graph G = (V ,E), rotation system,
nodes s, t ∈V , and regions R ⊂ 2E be given such that ∪R∈RR =
E . If k∗ denotes the maximum number of region-disjoint st-
paths, a collection of k∗ − 2 such paths can be found in
O

(
log(k∗)∥R∥ 3

2 log(∥R∥)
)

deterministic worst case time com-
plexity, or with high probability in O

(
log(k∗)∥R∥ log9(∥R∥)

)
expected time.

The proof of Thm. 1 will be immediate from Thm. 2 and
Thm. 3. In a nutshell, the key in our proof is that the optimum



of an easily solvable special case of the above problem, when
paths are non-crossing, is a lower bound on the maximum
number of paths. More formally, we say two st-paths in G are
non-crossing if after contracting their common edges there is
no node where the edges of the paths are alternating (Fig. 1);
k paths are non-crossing, if they are pairwise non-crossing.

Problem 2: Maximum number of region-disjoint non-
crossing st-paths

Input: A planar graph G = (V ,E), rotation system,
nodes s, t ∈V , regions R ⊂ 2E

Output: A maximum number of region-disjoint,
non-crossing st-paths P1,P2 . . . ,Pk

v1

v2

v3

v4

v5

v6

s t

Fig. 2. Example for the tightness of Thm. 3. If regions are only the five
colored lines, then MFnc = 1, MF = MC = 3. Paths of the crossing max-
flow are depicted by the dotted, dashed, and dashdotted arcs, respectively. By
adding all node failures (except from s and t), MF becomes 1.

As presented throughout this paper, Problem 2 is efficiently
solvable using a simply implementable algorithmic framework.

Theorem 2. Given a planar graph G = (V ,E), rotation system,
nodes s, t ∈ V , and regions R ⊂ 2E such that ∪R∈RR = E ,
a maximum number of k∗ non-crossing region-disjoint st-
paths can be found in O

(
log(k∗)∥R∥ 3

2 log(∥R∥)
)

determin-
istic worst case time complexity, or with high probability in
O

(
log(k∗)∥R∥ log9(∥R∥))

)
expected time.

The main parts of our algorithmic framework are described
in §II-C. Its details and the proof of correctness are presented
in §III. Finally, the runtime complexity is analyzed in §IV.

For a maximal number of region-disjoint st-paths problem
the corresponding min-cut problem can be solved in polyno-
mial time [19]. Next, we present a theorem comparing these
optimum values.

Theorem 3. Let a maximal number of region-disjoint st-paths
problem instance and its corresponding minimum regional
st-cut problem be given, and let MF and MC denote their
optimal values, respectively. Moreover, let MFnc denote the
optimal value of the non-crossing version of the problem. Then
MC −2 ≤ MFnc ≤ MF ≤ MC .

The proof of the theorem can be found in §V. The example
on Fig. 2 show that the theorem is tight in the sense that both
MF −MFnc and MC −MF can be 2 (and it is easy to give an
example where MFnc = MC ).

B. Regional dual graph

The algorithm we will describe for Problem 2 works on an
auxiliary directed graph, which we will call regional dual of
G , and denote by D∗

R
. Nodes of D∗

R
are faces in V ∗, and the

t

a b c
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s

(a) Graph G with its dual G∗, edge
colors/styles refer to regions R ∈R

(b) Regional dual D∗
R

corresponding
to graph G and set of regions R

Fig. 3. Graph G , its dual G∗ and regional dual D∗
R

, respectively. Edge colors
refer to regions in R. Path s,d , a, t is region disjoint with path s, f ,c,b, t , but
it is not with s, f ,e,b, t , since links ad and eb are part of the same region
(depicted with dashdotted dual edges).

arcs are derived from R: for every region R we add a complete
directed graph on V (R∗) to A∗

R
. Note that on Fig. 3b, we draw

an undirected version of D∗
R

, omitting the arrowheads on the
arcs, and for each arc pair u∗v∗ -v∗u∗ drawing only a single
edge u∗v∗. Every arc u∗v∗ belongs to a region R and we say
that an oriented path in G∗[R∗] is representing arc u∗v∗ ∈ A∗

R
if the path is completely in R∗. Note that the regional dual is
not necessarily planar and there can be parallel arcs.

C. Overview of the algorithm

The main idea of the algorithm is that the existence of k
region-disjoint non-crossing st-paths is equivalent to the non-
existence of a negative cycle in D∗

R
with respect to properly

chosen arc weights ck (i.e. ck is conservative). Oversimplified,
the vague description of ck is the following. First, we fix a
directed st-path P . Then if an arc a of D∗

R
does not cross P ,

we set ck (a) = 1, if it crosses P from left to right ck (a) will
be 1−k, and finally, in case of a right-to-left crossing, ck (a) is
set to 1+k. A formal definition of weights ck will be provided
in §III-B.

We will see in the next section that if ck is conservative,
we get a feasible potential π : V ∗ →Z (that is, ck (uv)+π(u)−

s

t

(a) Regional dual D∗
R

. Cost ck of black-
and-dotted, red-and-dashed, and blue-
and-dashdotted arcs is 1, 1−k, and 1+k,
resp. For ck≥5, the red closed arc en-
codes a negative cycle.

2 1 1

3 0 1

3 0 1

3 0 1

2 1 1
s

t

2

(b) Topology G , with the regions
being exactly the nodes v ∈ V \
{s, t }. Numbers on the faces form
a feasible potential for ck=4.

Fig. 4. Example topology G being a 4×6 node grid lattice graph, with the
regions being exactly the nodes v ∈V \{s, t }. The st-path P in G is the shortest
path, through the three vertical edges.



Algorithm 1: Algorithm for finding the maximum
number of region-disjoint, non-crossing st-paths

Input: Planar graph G = (V ,E), rotation system, nodes
s, t ∈V , regions R ⊂ 2E

Output: Region-disjoint, non-crossing st-paths P1,P2 . . . ,Pk
and witness for non-existence of k +1 paths.

1 binary search on k (check existence of k paths with Alg. 2)
2 =⇒ k∗ optimum

3 ck∗ =⇒π=⇒ paths P1, . . . ,Pk
// k region disjoint non-crossing paths

4 ck∗+1 =⇒C∗ // Witness of non-existence
5 return P1, . . . ,Pk and C∗

π(v) ≥ 0 for all uv ∈ A∗
R

), then create a corresponding arc set
F which describes the required paths P1, . . . ,Pk . Intuitively,
the boundaries between the mod k classes of faces of G
according to π determine k non-crossing R-disjoint paths (as
depicted on Fig. 4b).

If ck is not conservative, we consider a negative cycle C ′
in D∗

R
(as the red closed arc shows on Fig. 4a), which gives

a witness for the non-existence of k paths, and then move on
to the next k.

The maximum k for which weighting ck is conservative
(and a number of k non-crossing st-paths exist) can be found
via binary search (see Alg. 1).

III. FINDING k NON-CROSSING REGION-DISJOINT PATHS

The existence of k region-disjoint non-crossing st-paths can
be reduced to checking the conservativity of weightings in
two steps. First, we show that some dual walks in G∗ with
some special properties are witnesses for the non-existence of
k required paths (see next subsection, Lemma 4).

Second, with a proper weighting on D∗
R

(to be introduced
in §III-B), these special dual walks in G∗ can be reformulated
as negative cycles in D∗

R
.

A. Witness for the non-existence of region-disjoint, non-
crossing st-paths

In order to give a witness we need to define some notions
on the dual graph (also used in [18]).

First, we introduce the winding number. Let P be an st-
path and C∗ a closed oriented walk in G∗. Let wl r (C∗) and
wr l (C∗) denote the number of times C∗ intersects P from left
to right and from right to left, respectively. Then the winding
number of the walk is w(C∗) = |wl r (C∗)−wr l (C∗)|. Note that
w(C∗) does not depend on the choice of P .

In some proofs we need a similar notion for dual paths
as follows. Let P be an st-path and Q∗ an orientation of a
path in G∗. Let wP (Q∗) denote the number of times path Q∗
intersects path P from left to right minus the number of times
it intersects right to left.

Let C∗ be a closed walk in G∗. Partition C∗
1 ,C∗

2 , . . . ,C∗
l is

a region-cover of C∗ with l regions if each C∗
i is a subpath

of C∗ and each C∗
i is a subset of an R∗

i for a region Ri ∈R.
The region-length of C∗, denoted by l (C∗) is the minimum
l such that there is a region-cover of C∗ with l regions. In
[18] it was shown that ⌊l (C∗)/w(C∗)⌋ is an upper bound for the

maximum number of node- and region-disjoint paths problem
(if the optimum value is at least 2). Here we show that the
same argument carries over to non-crossing paths.

Lemma 4. Let a maximum number of region-disjoint non-
crossing paths problem instance be given with optimal value
k ≥ 2, and let C∗ be a closed walk in the dual graph with
w(C∗) > 0. Then

⌊
l (C∗)
w(C∗)

⌋
≥ k.

Proof: (See Fig. 2 with C∗ of red-blue-brown-green-
yellow regions: l (C∗)

w(C∗) = 5
3 ≥ MFnc .) Let P1, . . . ,Pk be non-

crossing, region-disjoint st-paths, and let C∗
1 , . . . ,C∗

l be a
region-cover of C∗ with l = l (C∗). We may assume that
wl r (C∗) > wr l (C∗). Since each st-path is intersected by C∗
at least w(C∗) times, every path Pi also intersects C∗ at least
w(C∗) times.

Claim 5. If k ≥ 2, then |wP j (C∗
i )| ≤ 1 for 1≤i ≤l and 1≤ j ≤k.

Proof: Assume indirectly that wP j (C∗
i ) ≥ 2. Then for any

planar embedding of G edges C∗
i ∪P j would contain a curve

in the plane separating s and t , contradicting the existence of
another non-crossing path region-disjoint from P j .

From the claim we get that if k ≥ 2, each path Pi intersects at
least w(C∗) distinct subpaths C∗

j , which gives kw(C∗) ≤ l (C∗),
that is ⌊l (C∗)/w(C∗)⌋ ≥ k indeed.

In §V in Thm. 19 we will show that this bound is sharp.

B. Reduction to conservative weightings

In this subsection we show that with properly chosen arc
weights ck the existence of k region-disjoint non-crossing st-
paths is equivalent to the conservativity of ck on D∗

R
. We may

assume that there is no region separating s and t (otherwise
the problem is trivial). In order to define weights on the arcs
of D∗

R
, let P be an arbitrary fixed st-path in G . For every

arc u∗v∗ ∈ A∗
R

we consider a representing path Pu∗v∗ in the
dual region G∗[R∗] with the orientation from u∗ to v∗. Let
wP (u∗v∗) := wP (Pu∗v∗ ). From the following claim we get that
this value is well-defined.

Claim 6. Let u∗v∗ be an arc in the regional dual graph,
belonging to region R, and Q∗

1 and Q∗
2 two paths in R∗ from u∗

to v∗. If R does not separate s and t , then wP (Q∗
1 ) = wP (Q∗

2 )
for any st-path P .

Proof: Assume indirectly that wP (Q∗
1 ) ̸= wP (Q∗

2 ). Then
the concatenation of Q∗

1 and the reverse of Q∗
2 would give

a closed dual walk C∗ with non-zero wP (C∗). Such walks
contain an st-cut so region R would be separating s and t ,
contradicting the assumption.

For a positive integer k, cost function ck is the following:
ck (u∗v∗) = 1−wP (u∗v∗) ·k.

The key of our algorithm is the following theorem.

Theorem 7. Cost function ck is conservative on D∗
R

if and
only if there are k region-disjoint, non-crossing st-paths in G .

Proof: We will prove the theorem via two lemmas corre-
sponding to the ‘if’ and ‘only is’ parts of the equivalence in



the theorem. First we show that a negative cycle with respect
to ck is a witness for the non-existence of the required paths.

Lemma 8. If ck is not conservative, then there are no k
region-disjoint, non-crossing st-paths in G .

Proof: We will find a closed walk C∗ in the dual of G
with l (C∗)

w(C∗) < k, which proves the lemma by Lemma 4. If ck

is not conservative, then there is a negative cost cycle C ′ =
f1, f2, . . . , fl , f1 in D∗

R
. Each arc fi fi+1 has a representing path

Qi from fi to fi+1 in G∗ (where fl+1 = f1). Then Q1,Q2, . . . ,Ql

give a closed dual walk C∗. Since subpaths Qi form a regional
cover of C∗, we get that l ≥ l (C∗). We have 0 > ck (C ′) =
l −k ·∑l

i=1 wP (Qi ) = l −k ·wP (C∗) ≥ l (C∗)−k ·w(C∗), which
gives a closed dual walk with l (C∗)

w(C∗) < k indeed.
Next we turn to the second part and show that if ck is

conservative, then the required paths exist.

Lemma 9. If ck is conservative on D∗
R

, then there are k
region-disjoint non-crossing st-paths in G .

Proof: Let π : V ∗ →R be a feasible potential for ck , that
is, π(v∗)−π(u∗) ≤ ck (u∗v∗) for every arc in D∗

R
(such a po-

tential exists from the classic characterization of conservative
weightings). The idea of the proof, in a nutshell, is to consider
those edges of G where π changes by 1 (or by k ±1 on P).
These edges turn out to have a nice structure and give the
required paths (Fig. 4). For each node x ̸= {s, t } we define an
oriented subset Fx of edges incident to x.

First, we define Fx for nodes not on P . We assumed every
edge is part of at least one region, so π values on faces around
x are ‘smooth’ in the sense that neighboring faces differ by at
most 1. If for neighboring faces u and v we have π(v)−π(u) =
1, then we consider their common edge x y and add to Fx its
anti-clockwise orientation with respect to uv (see Fig. 5a).

Second let x ̸= {s, t } be a node on P . In order to get a
‘smooth’ potential around x, we translate π by k on some
faces neighboring x the following way. Let e and f be the
edges on P preceding and following x, respectively, and let
le , l f and re ,r f denote the faces on the left and right of e
and f according to the orientation on path P from s to t . We
denote by L the set of faces clockwise to le until l f around
x, and decrease π by k on every face in L. The resulting
potential around x is denoted by πx . Since π is a feasible
potential and ck (le re ) = −k + 1 and ck (re le ) = k + 1, we get
that π(le )−k −1 ≤ π(re ) ≤ π(le )−k +1 (and similarly for f ).
So after the translation the πx values of neighbouring faces
differ by at most 1 around x, and we can create Fx using πx

the same way as we did for nodes not on P .
Let F := ∪x∈V \{s,t }Fx . Note that this definition of F is

consistent in the sense that arc uv ∈ Fv if and only if uv ∈ Fu

(u, v ̸= s, t). We call an arc x y ∈ F an (i , i + 1)-type arc if
π(u) ≡ i mod k, where u is the face on the left of x y in G .
(Thus π(v) ≡ i +1 mod k for face v on the right of x y in G .)

Claim 10. Graph spanned by arcs F is Eulerian on V \ {s, t }
in the directed sense. Moreover, at every node v ∈ V \ {s, t }
the incoming and outgoing arcs in Fv can be partitioned into

pairs such that: 1) pairs have the same type, and 2) pairs are
non-crossing.

Proof: Let us consider the ordered set N of neighbouring
faces of v in Gk in a clockwise order: N = u1,u2, . . . ,ul ,ul+1,
where ul+1 = u1. Since π (or πv if v ∈ P ) on neighbouring
faces can differ by at most 1, the number of indices i such
that π(ui )+ 1 = π(ui+1) equals the number of indices i for
which π(ui )−1 =π(ui+1) (1 ≤ i ≤ l ), which shows that graph
spanned by F is Eulerian.

Now we define the arc pairs for a node v . Assume v ∉ P
(for a node v on P the same argument holds with πv ). If π

is constant on neighboring faces, then there are no arcs in F
incident to v . Otherwise, let Π denote the maximum value of π
on faces incident to v , and let ui , . . . ,ui+ j be a maximal subset
of consecutive faces of this value: Π = π(ui ) = . . . = π(ui+ j )
and Π− 1 = π(ui−1) = π(ui+ j+1), where ux = uy if x ≡ y
mod l . Then π(ui−1) =π(ui )−1 and π(ui+ j+1) =π(ui+ j )−1, so
they have an incoming and an outgoing corresponding arc in F
with the same type. We pair them at v , and by contracting faces
ui−1,ui , . . . ,ui+ j ,ui+ j+1 in N we can continue this process
until all pairs are formed (see Fig. 5b).

Claim 11. There are k non-crossing st-paths P1, . . . ,Pk in F
formed by the pairing and each path has a unique type.

Proof: Pairs created in Claim 10 partition F into non-
crossing directed cycles and non-crossing st-paths such that
arcs within a cycle or path have the same type. Let ρF (v) and
δF (v) denote the in- and out-degree of a node v in F . Nodes s
and t both have one incident edge on P , where π changes by
k or k±1, so δF (s)−ρF (s) = k, and similarly ρF (t )−δF (t ) = k.
Hence there are k non-crossing st-paths P1, . . . ,Pk created, and
each path has a unique type.

Claim 12. Let R ∈ R be a region. Then arcs in F ∩R have
the same type modulo k.

Proof: First consider the case when R∩P =;. Since there
is an arc of weight 1 in D∗

R
connecting any two nodes in

V (R∗), it is easy to see that π values on R can differ by at most
one and so there can be at most one type of arc in F . Second
assume R ∩P ̸= ;. Then R ∩P can be partitioned into node-
disjoint sub-paths of P : R1, . . . ,Rl . Each sub-path Ri forms a
cut in G∗[R∗], and these cuts are non-crossing, so these cuts
partition faces in V (R∗) into ordered sets U1, . . . ,Ul+1 such that
face-sets Ui and Ui+1 have common border Ri (for i = 1..l ),
see Fig. 6. We reduce this case to the first by translating π

on each Ui by a constant to get a ‘smooth’ potential. Let
∆i := wP (Q∗

i ), where Q∗
i is a path in R∗ from a face in U1 to a

face in Ui . We add ∆i k to π on each set Ui . Then the resulting
potential π′ differs by at most one on V (R∗). Moreover, for
every node x ∈V (R)\{s, t } potential πx is a translation of π′ by
a constant on faces in V (R∗) neighbouring x. Thus the edges
in R with different π′-valued neighbouring faces are exactly
R∩F . Since π′ differs by at most one on V (R∗), we can apply
the same argument as in the first case.

In Claim 11 we showed that each type class modulo k
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belongs to a path Pi , we may assume that path Pi has type
(i , i +1). From Claim 12 we get that a region can intersect at
most one type of arcs in F , so it can intersect at most one
path Pi , which proves this lemma.

From Lemmas 8, and 9, we get the proof of Thm. 7.

IV. RUNNING TIME ANALYSIS OF THE ALGORITHM

In this section we give a detailed running time analysis of
Alg. 1. First observe that the running time of building up k
paths from a feasible potential on D∗

R
is negligible: if for a

certain k weighting ck is conservative on D∗
R

and a feasible
potential π is given, arc set F can be created in O(|V |) time.
Then both the pairings of arcs in F around all nodes in V \{s, t }
and the creation of k required paths can be done in O(|V |) time
also. Thus, the bottleneck of the algorithm is the decision of
the conservativity of ck on D∗

R
for a given k. In the following

subsection we show how the regional dual graph D∗
R

can be
substituted by another directed graph to get a better running
time. Then in §IV-B we analyze some subroutine options for
the decision of conservativity of ck on D∗

R
.

A. A smaller representation of D∗
R

We have seen in Thm. 7 that directed graph D∗
R

and weight-
ing ck capture enough information to decide the existence of
k regional-SRLG-disjoint st-paths in G . The number of arcs
|A∗

R
| =O(

∑
R∈R |R|2). In this subsection we show that the set

of arcs can be substituted by a collection of subgraphs with
a total number of O(

∑
R∈R |R|) arcs, giving a better running

time (see Alg. 2).
We build a new auxiliary graph D0 and define arc weights

c0
k such that ck is conservative on D∗

R
if and only if c0

k is
conservative on D0. We start from the empty graph on V ∗, and
for each region R ∈R instead of the complete directed graph
on V (R∗) we add the following subgraph to D0: we consider
again the partition U1, . . . ,Ul of V (R∗) as in Claim 12 and for
each Ui we add a node uR

i to V ∗ and arcs uR
i uR

i+1 and uR
i+1uR

i
(1 ≤ i ≤ l ). If set Ui is on the left (or right) of separating
subpath Ri , we set c0

k (uR
i uR

i+1) :=−k and c0
k (uR

i+1uR
i ) := k (or

c0
k (uR

i uR
i+1) := k and c0

k (uR
i+1uR

i ) :=−k). For every set Ui and
every node v ∈Ui we add arcs vuR

i and ui v with weights 1
and 0, respectively (see Fig. 7 for illustration).

Claim 13. Weighting c0
k is conservative on D0 if and only if

ck is conservative on D∗
R

. The number of arcs and nodes in
D0 are both O(∥R∥).

Proof: It is easy to check that for every region R and for
each arc u∗v∗ ∈ A∗

R
belonging to R there is a corresponding

path in the subgraph created for R with the same weight.
Moreover, given a feasible potential π0 on D0, its projection
onto V ∗ gives a feasible potential on D∗

R
and similarly a

negative cycle C 0 in D0 corresponds to a negative cycle C ′
in D∗

R
. For a region R O(|R|) nodes and arcs are created.

B. Algorithm options for finding a feasible potential

In this subsection, we investigate some algorithms that are
suitable for computing the feasible potential π, or proving that
no such potential exists. Particularly, we will take advantage
of the following fact.

Proposition 14. Weighting ck on D∗
R

= (V ∗, A∗
R

) is conser-
vative if and only if for any fixed node v∗ of D∗

R
= (V ∗, A∗

R
)

by setting π(w∗) := dck (v∗, w∗) for each w∗ ∈ V ∗, we get a
feasible potential π.

In line with this proposition, in all the following cases, we
check the conservativity of the weighting of D∗

R
= (V ∗, A∗

R
),

but instead of D∗
R

we will use auxiliary directed graph D0

described in §IV-A. We compute a feasible potential by using
the distances of the nodes of D0 from any fixed node, the
only difference will be the exact algorithm that is plugged in
to provide these information. All the subroutines we propose
below either calculate the distances from a given node if the
weighting is conservative or return a negative cycle if it is not.

Algorithm 2: Algorithm for checking the existence of
k ≥ 2 region-disjoint, non-crossing st-paths

Input: Planar graph G = (V ,E), rotation system, nodes
s, t ∈V , regions R ⊂ 2E , k ≥ 2 : # of paths

Output: Region-disjoint, non-crossing st-paths P1,P2 . . . ,Pk
or dual walk C∗ witness of non-existence.

1 fix st-path P
2 create D0; create c0

k
3 check c0

k conservative: =⇒C 0 negative cycle or π0 feasible
potential

4 if c0
k conservative then

5 π0 =⇒π=⇒ F =⇒ P1, . . . ,Pk
6 return P1, . . . ,Pk // k region disjoint

non-crossing paths

else
7 C 0 =⇒C∗ in G
8 return C∗// Witness of non-existence



1) Bellman-Ford and SPFA: Perhaps the most well-known
algorithm for computing the shortest path lengths from a single
source vertex to all of the other vertices in a weighted digraph
is the Bellman-Ford (BF) algorithm that has a complexity of
O(nm) on a graph with n nodes and m arcs [22]. In our case,
for D0, this means a complexity of O(∥R∥2) by Claim 13.
For the simulations, we have implemented a heuristic speedup,
the so-called Shortest Path Faster Algorithm (SPFA) [23], that
has a same worst-case time complexity as the BF, but there is
anecdotic evidence suggesting an average runtime somewhere
around being linear in the number of network links (for D0,
this would mean a typical runtime in the order of ∥R∥).
Our simulation results (§VII) are in line with this expected
performance. While the SPFA, in the worst case, is not faster
than the classic BF, the next algorithm reduces this complexity.

2) A worst-case faster algorithm: Having a graph with n
nodes and m arcs, and integer weights on the arcs of absolute
value at most W , [24] claims the following.

Theorem 15 (Theorem 2.2. of [24]). The single-source short-
est path problem on a directed graph with arbitrary integral
arc lengths can be solved in O(

p
n·m log(nW )) time and O(m)

space.

Applied to our problem with D0, this means:

Corollary 16. Given a maximum number of region-disjoint
non-crossing st-paths problem instance and integer k ≥ 2,
the existence of k required st-paths can be decided in time
O(∥R∥ 3

2 log(∥R∥)).

Proof: The proof is immediate from Thm. 15, Proposition
14, Claim 13 and that the maximal absolute value of a weight
on the links is O(|V |2).

3) A near-linear time randomized algorithm: The following
result grants a near-linear runtime for our framework.

Theorem 17 (Theorem 1.1. of [25]). There exists a ran-
domized (Las Vegas) algorithm that takes O(m log8(n) log(W ))
time with high probability (and in expectation) for an m-edge
input graph Gi n and source si n . It either returns a shortest
path tree from si n or returns a negative-weight cycle.

By the same observations as in Cor. 16, we get the following.

Corollary 18. Given a maximum number of region-disjoint
non-crossing st-paths problem instance and integer k ≥ 2,
the existence of k required st-paths can be decided in time
O(∥R∥ log9(∥R∥)) with high probability (and in expectation).

The running time complexities in Thm. 2 follow from
Cor. 16, Cor. 18 and the observation that the optimum k∗
is found via binary search, giving a multiplication of log(k∗)
to the above runtimes.

Comparison with previous running time: The most efficient
polynomial-time algorithm was given for the node- and region-
disjoint special case of the problem [18]. The running time of
their solution is O(|V |2µ(log(k)+ρ log(d)), where d denotes
the maximum diameter of a region in G∗, whereas µ and ρ are
(typically small) parameters denoting the maximum number

of regions an edge can be part of and the maximum size of
a region, respectively. Note that ∥R∥ =O(|V |µ), so our deter-
ministic algorithm has a running time of O(|V | 3

2 µ
3
2 log(|V |µ)),

which is indeed faster than the one in [18].

V. A MIN-MAX THEOREM FOR NON-CROSSING PATHS AND
AN ADDITIVE APPROXIMATION FOR THE GENERAL CASE

In this section, we mention some theoretical consequences
of the correctness of the algorithm. First, we derive a min-max
theorem for Problem 2.

Theorem 19. Let k∗ denote the optimum value of a maximum
number of region-disjoint non-crossing st-paths problem. If
k∗ ≥ 2, then it equals the minimum of ⌊l (C∗)/w(C∗)⌋, where C∗
is a closed walk in G∗ with w(C∗) > 0. For k∗ = 1 we can find
a closed walk C∗ with ⌊l (C∗)/w(C∗)⌋ < 2.

Proof: The optimum k∗ equals the maximum k such that
ck is conservative on D∗

R
. If k∗ ≥ 2, from Thm. 2 we get

that there are k region-disjoint non-crossing st-paths and since
ck+1 is not conservative, there is a negative cycle in D∗

R
with

respect to ck+1, which gives a closed dual walk C∗ in G∗ with
⌊l (C∗)/w(C∗)⌋ < k+1. If k∗ = 1, then c2 is not conservative, and
there is a dual walk C∗ with ⌊ l (C∗)

w(C∗) ⌋ < 2.
We will apply the min-max theorem above to prove Thm. 3.

A. Additive approximation for Problem 1

Proof of Thm. 3: The upper bound MF ≤ MC is trivial.
For the lower bound let MFnc denote the optimal value of
the corresponding path packing problem with the non-crossing
constraint and let C∗ be a closed walk as described in Thm. 19.

Claim 20. There exists a regional cut X ⊆R such that |X | ≤
⌊l (C∗)/w(C∗)⌋+2. ■

The proof is analogous to that of a similar result for node-
and region-disjoint st-paths in [18, Thm. 7]. Clearly, MFnc ≤
MF and from Claim 20 MC ≤ ⌊l (C∗)/w(C∗)⌋ + 2 ≤ MFnc + 2.
By merging the inequalities, we get the lower bound on MF :
MC −2 ≤ MFnc ≤ MF ≤ MC .

VI. PREVIOUS WORK

The maximum number of region-disjoint paths problem and
some of its special cases have been studied by numerous
papers. The results range from NP -hardness, heuristics, and
general (M)ILP formulations to polynomial time solutions to
some special cases. The related papers can be divided into
two branches. One branch concerns the theoretical preludes of
region-disjoint routing problems. The other branch is focused
mainly on computing SRLG-disjoint paths in communication
networks. In the following, we summarize the main results of
these papers.

A. Theoretical preludes

Maximum number of (crossing) region-disjoint paths:
Seminal work [19] investigates scenarios when a planar graph
is given with a fixed embedding, and each edge set in R

is the intersection of the graph with a subset of the plane



that is homeomorphic to an open disc (called as ‘holes’
in [19]). It gives a high-degree polynomial-time algorithm
for the minimum regional st-cut, even for the directed and
weighted problem version. As for the corresponding maximum
number of R-disjoint st-paths problem, it shows to be NP -
hard. Finally, [19] also proves that the minimum number of
separating regions is at most twice the maximum number of
R-disjoint st-paths plus two.

d-separate paths: [26] considers generalizations of disjoint
paths problems, where paths are required to be ‘far’ from each
other. Here distance is measured by the number of edges in a
shortest path connecting the paths (apart from their endpoints).
If this length is at least d +1, the paths are called d-separate.
Note that by choosing for each node or for each edge the set
of edges at a distance at most d (neighboring edges are at a
distance 0), we can define undirected d-separated paths as a
special case of region-disjointness, since such edge sets form
a connected subgraph in the dual graph. [26] gives a min-max
formula for the existence of k d-separated st-directed paths in
planar graphs. Their dual problem is not purely combinatorial
because it minimizes a value on a set of certain appropriate
curves in the plane.

B. Survivable routing in communication networks

Papers [1], [27] consider a network protection problem
when geographic failures modeled as circular disks may occur.
In their model, a region is a set of edges that can be the
intersection of the planar graph with a circular disk of a given
radius (apart from a protective zone around s and t). They
give a polynomial-time algorithm for the minimum regional
st-cut version of the problem and conjecture that the maximum
number of region-disjoint paths and the size of the minimum
cut differ by at most one in this case.

Later, [20], [28] proved this conjecture. These papers
adapted the method of [26], [29] for circular disk failures, and
gave a polynomial-time algorithm for the problem, as well as a
min-max formula. They also used a proper curve in the plane
for the characterization of the maximum number of region-
disjoint st-paths.

The problem was generalized from circular disk failures to
regions in [18], [30], so only assume that each edge set in R
is connected in the dual of the graph and all node failures are
part of an SRLG. They do not use the embedding of the graph
in the plane, only the clockwise order of incident edges for
every node (a rotation system) is part of the input. They give
a polynomial-time algorithm for this problem by generalizing
the method of [29] and [20] for planar rotation systems. Also,
they prove that the size of a minimum cut and the maximum
number of region-disjoint st-paths differ by at most two in
this general model, and this inequality is sharp. Their min-
max formula uses closed walks in the dual graph instead of
curves in the plane.

Further works in the field of region-disjoint routing: The
first paper to prove the NP -completeness of finding two
SRLG-disjoint (region-disjoint) paths was [31]. The result was

achieved by showing the NP -hardness of the so-called fiber-
span-disjoint paths problem, which is a special case of the
SRLG-disjoint paths problem. As it turns out, SRLG-disjoint
routing is NP -complete even if the links of each SRLG S
are incident to a single node vS [32]–[34]. Some polyno-
mially solvable subcases of this problem are also presented
in [32], [33]. An ILP solution for the SRLG-disjoint routing
problem is given in [35]. To solve, or at least approximate
the weighted version of the SRLG-disjoint paths problem
some papers use ILP (integer linear program) or MILP (mixed
ILP) formulations [36]–[38]. Based on a probabilistic SRLG
model, [39] aims to find diverse routes with minimum joint
failure probability via an integer non-linear program (INLP).
Heuristics were also investigated [40], [41], unfortunately,
with issues like possibly non-polynomial runtime or possibly
arising forwarding loops when the disaster strikes.

VII. NUMERICAL EVALUTION

In this section, numerical results are presented to demon-
strate the effectiveness of our algorithm on different real
physical networks. The algorithm was developed using C++,
and to facilitate reproducibility, we have uploaded our imple-
mentation of the algorithm and the input data to a publicly
accessible repository (see §VIII). To measure the runtime
performance, we conducted the experiments on a standard
laptop equipped with a 2.8 GHz CPU and 8 GB of RAM. We
employed the SPFA algorithm to calculate the potential, as it
is the simplest approach and still demonstrated a satisfactory
level of performance. We investigate two aspects: first, whether
the runtime of the algorithm is in line with the theoretical
bounds; second, we compare the algorithm with the previous
state-of-the-art method in terms of runtime and path length.

A. Runtime analysis

To measure the algorithm’s runtime increase concerning
the input size, we have generated numerous grid graphs,
as shown in Fig. 8a. Such a series of grid graphs contain
various numbers of rows and columns and feature uniform-
sized regions composed of 2, 4, or 8 adjacent vertical edges.
In Fig. 8b, we show the results for the series of graphs with a
gradually increasing number of rows in a 100×10 grid graph
until it reached a 100× 100 grid graph, resulting in a total
of 273 problem instances. Thus the total size of regions ∥R∥
is a linear function of the number of nodes, and we expect
a nearly linear running time. In this experiment, the number
of paths remains the same, but their length increases as the
graph has more rows. The number of region disjoint paths
depends on the size of the regions: 50 paths for size 2, 25
for size 4, and 12 for size 8. The average runtime exhibits
linear growth with the size of the graph, as expected. For the
largest graph with 10002 nodes and 20000 edges, the runtime
was 0.4 seconds. We repeated the aforementioned process, but
this time, we generated a sequence of graphs with gradually
increasing the number of columns of a 10×100 grid graph,
see Fig. 8c. As a consequence, the number of region-disjoint
paths increased with the network size. This resulted in slightly
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(a) A 6 × 10 grid graph with
regions drawn in red, each con-
sisting of a size of 2.
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(b) Grid graphs with 100 columns and
varying numbers of rows of the Proposed
algorithm. Region sizes: 2, 4, or 8.
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(c) Grid graphs with 100 rows and vary-
ing numbers of columns of the Proposed
algorithm. Region sizes: 2, 4, or 8.
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(d) Grid graphs with 100 columns and
varying numbers of rows for Dervish
[18] algorithm. Region sizes: 2, 4, or 8.

Fig. 8. The runtime of the algorithm solving grid graphs of different sizes.

steeper curves; nevertheless, the algorithm still demonstrated
convincing performance in this scalability test. In the overall
slope of the runtime increment in function of the number of
nodes, we can observe a stepwise increase, which is attributed
to the nature of the binary search for path numbers, and for the
fact that more columns result in more region-disjoint paths.

B. Comparison to previous algorithms

Next, we compare the proposed algorithm with its state-of-
the-art counterparts [18], [20]. In our comparison, we refer
to the algorithm in [18] as Dervish. As mentioned in the
introduction, both algorithms have two main phases: the first
phase finds a proper path P with some special properties, then
the second phase applies a greedy iterative path search method
starting from P . The greedy part is simple and relatively fast;
however, finding a proper path in the first phase could be
time-consuming. The simulations in [18] suggested using a
fast heuristic for finding P , which may fail to find a proper
first path to start with. Note that the second phase is also a bit
slower than our approach. The main difference is that their
algorithm processes each region multiple (possibly O(|V |))
times, whereas our approach processes each region only once
(for creating D0). Furthermore, for proving maximality, the al-
gorithm of [18] needs to perform O(|V ∗|) depth first searches,
indicating a worst-case runtime complexity not better than
O(|V |2). Fig. 8d shows the runtime of the Dervish algorithm
for grid graphs with varying numbers of rows.

Table I presents the results obtained on the real-world
networks and corresponding regional failures used in [18].
We specifically selected problem instances where the fast
heuristic in the first phase successfully found a proper P .
The first and second columns display the runtimes of the
two algorithms. Our implementation of Dervish is in C++
and uses the proposed algorithm instead of a heuristic in
the first phase. The hop length of the paths obtained by the
proposed algorithms is shown in the fifth column. The average
hop length of all the 208 problem instances is 21.2 for the
proposed algorithm, compared to 18.5 for Dervish. However,

after applying a simple heuristic approach to reduce path
lengths [18], [20], both algorithms achieve similar lengths. The
post-processing step took a maximum of 14ms to complete.

VIII. CONCLUSION

In this paper, we propose an efficient algorithm for find-
ing the maximum region-disjoint st-paths. While the general
maximum path problem is known to be NP -hard, there are
theoretical results for polynomial algorithms for special cases
when the network topology is planar. This is the first paper to
suggest an efficient and relatively easy-to-implement algorithm
for this problem. Our approach works on all planar graphs,
where each set of failed links to protect corresponds to a
connected geographical region, and the resulting paths must be
non-crossing. Our algorithm encompasses and improves upon
previous models in the field.

The key innovation of our approach is the use of an
auxiliary graph called the regional dual graph. This reduces the
problem of finding a single-source shortest path in a weighted
directed graph, where the links can have negative weights. We
implemented the algorithm in C++, and we managed to solve
problem instances with 10000 nodes within seconds. This is
the first highly scalable solution for the problem, demonstrated
by both theoretical runtime analysis and our measurements.
The authors have provided public access to their code and
data at https://github.com/jtapolcai/regionSRLGdisjointPaths.

TABLE I
BACKBONE NETWORK TOPOLOGIES USED IN THE SIMULATIONS [18]. FOR THE

DETAILS OF THE TOPOLOGIES, REFER TO [42].

Network Runtime [ms] Avg. path hops Shortened hops
name |V | Proposed Dervish Proposed Dervish Proposed Dervish

Pan-EU 16 0.2 0.6 5.8 5.8 4.5 4.5
EU optic 22 0.4 1.5 7.0 7.1 3.7 3.7
US optic 24 0.3 1.2 7.6 7.6 3.1 3.1

EU (Nobel) 28 0.4 1.3 9.6 9.6 5.7 5.7
N.-American 39 0.6 2.7 12.6 12.6 5.3 5.3

US (NFSNet) 79 0.9 4.8 18.4 18.3 13.4 13.3
ATT-L1 162 1.8 16.4 11.7 11.7 10.9 10.9
US (Fibre) 170 2.2 5.2 39.7 9.6 6.1 6.5

US (Sprint-Phys) 264 2.2 21.9 45.7 45.7 21.9 21.8
US (Att-Phys) 383 4.8 68.2 60.8 60.8 26.2 25.4
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