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1 Introduction

Knowing more about the topology formation of complex networks — like social networks, biological
networks or the Internet — has great importance. Such knowledge can help us to gain insight into
the decision making process of individuals in the network and to understand the principles that
govern the emerging topological features. However, despite the large existing literature from
multidisciplinary research areas, our knowledge is still limited and incomplete. In general, we
have valuable information about network dynamics from multiple aspects, but still the topological
footprints inflicted by routing policies is an unacquainted aspect, though, this is one of the most
determining factors on the resulting network.

To make this statement clear just consider that in every network where there is communication
the preferred routes for the information flows emerge somehow. The preferences that drive this
process can be described by a set of rules what we collectively call routing policy. The routing policy
naturally dictates that only those connections are being created and kept that are remunerative
for the efficient communication. Fig. 1 shows a simple example to illustrate this idea.
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Figure 1. Policy drives topology: We have three nodes (A, B,C') among which we decide to build a network.
The characteristics of the possible edges (A, B), (A,C), (B,C) are defined by a triplet: latency, bandwidth
and reliability (1,b,1) (rightmost). Now we have to decide what topology should be built. Clearly, if the
routing policy is the shortest path policy, then all the links have to be used. If the policy is the widest path,
meaning that the highest bandwidth preferred between the nodes, then the third topology from the left is the
appropriate choice. Finally, if the policy is the most reliable path policy then the corresponding network
will be the leftmost topology.

Based on this influence between the used routing policy and the network topology, we can say
that understanding the topological footprint of a routing policy can give valuable insight into the
topological properties of a real network.

2 Research Objectives

The objective of my dissertation is to give a comprehensive analysis about the network forma-
tion effects of different routing policies related to complex networks. To do this I discuss two
fundamental routing policies: first I focus on the Border Gateway Protocol that encompasses the
inter-domain routing policies on the Internet autonomous system level topology, and within that
the two most important rules called valley-free (VF) and highest local preference (HLP) rule, then
I broaden the context from the Internet specific routing policies to investigate greedy navigation
that is the most accepted routing policy of general complex networks.

In particular, in the first part I define models in an incremental way for the VF and the HLP
rules and identify the emerging topologies that can be understood as a direct consequence of these
policies. I characterize the topological artifacts of these topologies and try to give reasonable
predictions about the Internet’s AS level topology based on the models.



In the second part, I design a topology generator, based on the previous results. I show that,
although the model is very simple, still the generated topologies reflect the features of the AS level
topology along several metrics. I also provide a comprehensive comparison with existing topology
generators.

In the third part, I create a model for greedy navigation that describes the communication
more realistically than previous models, namely, instead of shortest path nodes use greedy path
forwarding. I give a proof that in the Euclidean space the emergence of topologies on which
we understand the principles of greedy navigation and which inspire many algorithms cannot be
justified through the interaction of rational, selfish players. I also present a brief outlook on how
the situation changes if the hyperbolic space is used, instead of Euclidean.

I believe that my results may contribute to extending our knowledge about the effects of routing
policies on the topology formation process of complex networks, since they give complementary
insight to the existing results.

3 Methodology

Throughout the dissertation I use a game theoretical approach as it provides a suitable toolkit for
analyzing the network-creation process from the aspect of individuals. I define models (games) in
which the policy rules exist in their pure and realistic form, carefully separated from other factors
that could confuse the analytic inference.

Generally a game can be described by three components: players, strategies and payoffs. For-
mally, such a game consists of a set P of players (intelligent rational decision-makers) with cardi-
nality N. Each player u has its own set of possible strategies .S, describing the possibilities how u
can act. During the game each player u selects a strategy s, € S, and each state of the game is
represented by the strategies of players s = (sy, ..., sy). The network creation process is considered
finished if the game reaches a Nash equilibrium (NE) state:

Definition 1. The game is in the state of NE if no player has anything to gain by unilaterally
changing its strategy. In other words, a strategy s € S constitutes a Nash equilibrium if for all
players w and for each alternate strateqy s, € Sy : L.(Su, S—u) > L.(8,$_4), where s, denotes the
strateqy played by player u, s_, denotes the strategies played by all other players and I, denotes

the payoff of player u.

In the models the network is represented with a simple, undirected graph G(V, E') with V being
the set of nodes and F the set of links and all nodes are considered as rational, selfish players whose
intention is forming a network along their own interest. During the investigation I first perform
a theoretical analysis, that is followed by simulations and measurements (when applicable, e.g. in
the case of the Internet). The simulations are implemented in C++ /igraph! and the results are
conducted through various BASH? scripts. During the comparison with the real AS level network
I use topological information from CAIDAS3. Since the generated topologies are represented in
Geographic Markup Language (GML) format, I converted CAIDA’s data to this format.

Lgraph is library providing a collection of efficient implementations of common data structures and algorithms
for network analysis.

2Bourne Again SHell is a command-line interface for interacting with Unix/Linux based operating systems.

3The Center for Applied Internet Data Analysis (CAIDA) is a collaborative undertaking among organizations
in the commercial, government, and research sectors aimed at promoting greater cooperation in the engineering
and maintenance of a robust, scalable global Internet infrastructure.



4 New Results

4.1 Consequences of the Border Gateway Protocol

In the following, I consider ASs as rational but selfish players whose incentive is to communicate
with each other using the valley-free (VF) and the highest local preference (HLP) rules for routing
policies.

Thesis 1. I have created a game theoretical model that can address the consequences of the most
fundamental BGP policy, called valley-free routing. I have identified a graph that is a natural
consequence of valley-free routing and which is omnipresent in the Internet AS level topology as a
subgraph. I have extended the model by adding the second BGP rule, called highest local preference,
to the analysis and I have disclosed and characterized a further refined version of the graph acquired
from the first model that I call the “Spiderweb graph”.

4.1.1 The Valley-Free Game

The VF rule is the most fundamental part of the BGP policy routing, since any valid path between
ASs has to be a VF path as well. Accordingly, my first goal is to define and analyze a game to
understand how this rule affects the topology.

The policy dictates that AS A can use a link to a neighboring AS B to forward the traffic if and
only if either the incoming traffic is from a customer or B is a customer of A [15]. In other words,
valley-free compliant paths comprise arbitrary (may be zero) number of customer-provider links,
zero or one peer link and again arbitrary provider-customer links strictly in this order (Fig. 2).
The valley-free policy is a typical example on how important an economic, i.e. a non-technical,
policy constraint could be. In the following, I define and analyze a game to understand how this
rule affects the topology.
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Figure 2. Illustration of path types that (a) satisfy and (b) violate the VF policy. A wvalid path contains
n customer-provider, at most 1 peer and m provider-customer link strictly in this order, where n,m € N.
All the other types are invalid paths.

Thesis 1.1. [ have created a game theoretical model in which the nodes are being incentivized by
valley-free routing and I have given a special graph that constitutes the Nash Equilibrium of the
game. This special graph comprises a clique as a subgraph — which size depends on the cost ratio
of the peering and customer-provider links — and trees rooted at some subset of the clique.

Players and routing — Let P be the set of players (identified as network nodes) with cardi-
nality IV and the players has incentives to communicate with each other but only via VF paths.

Strategies and topology — A strategy for player u € P is to create a set of undirected edges
to other players in the network. The created edges can be of types customer-provider (p) and peer
(r) edges in accordance with the relationships of the VF routing. The r edges are paid at both
sides, however p edges are paid by the customer. Thus the complete strategy space of player u
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Figure 3. Example for a VEF topology. In such a topology there could be two type of nodes, T1 and none
T1. Tl1s are connected by r edges, which are counted on both sides in the cost function, however p edges
are paid only by the customer, who requested it. The flow of cash is visualized by arcs. According to this
there are two possible cost functions: (i) Cy = @rur = @ (|V(Ky)| — 1) and (ii) C, = pp.

is S, = 3P\“} where the number 3 covers the third choice of node u, which is creating no edge.
Let s be a strategy vector containing the strategies of all players hereby representing the current
state of the game: s = (s, 51, ..., Sn—1) € (50,51, ..., Sy—1). Then the graph G(s) = Uf\:Ol(z X 8;)
represents the topology between the players.

Payoff — The goal of the players is to minimize their costs. The cost of player u is defined as:

Cu(s) = Z dG(s) (U,, U) + gppup + SOTUM U, v S P7 (1)
vEU link cost

communication cost

where ¢, is the cost an edge of type x € {r,p}, u, is the number edges of type x and dg s (u,v)
is the communication cost between u and v over G(s) given by dg(s)(u,v) = 0, if a VF path exists
between u and v, otherwise co. In what follows I identify the Nash equilibrium of the game in
different settings of the parameters.

Definition 2 (Valley-Free footprint (VFF)). A graph is a valley-free footprint if it consists of (i)
a clique K, comprising peer (r) links only, and (ii) trees rooted at some subset of V(K,) having
customer-provider links (p) only, such that for all provider-customer connections the provider is
always closer to their respective root than the customer (see Fig. 3).

Theorem 1. A VFF is a Nash equilibrium if and only if {%W < |V(K,)| < L%J +1.

According to Theorem 1 in nontrivial cases this very simple game exhibits a significant level of
structural resemblance to the Internet AS level topology. On the AS level tier-1 ASs (T1s) are in
a clique that have peering agreements with each other, this is the top of the hierarchy. The rest of
the nodes are customers of T1s either in a direct or in an indirect way. These topological features
are clearly reflected by the results and now they can be understood as a clear consequence of the
VF policy. Theorem 1 also gives a rough estimation on the number of T1 nodes as the function
of edge costs.

4.1.2 The Highest Local Preference Game

The second rule of the Best Path Selection Algorithm is the other very important economically
motivated policy, which is the highest local preference policy. It is applied on top of valley-free



routes meaning that an AS can pick one from the available valley-free routes according to its
local interest. Meanwhile these local interests can exhibit a high variety the minimalistic rule,
that customer and peer paths are favored over provider paths, is contained in basically every local
preference setting within the ASs [11]. Fig. 4 shows a simple illustration in which AS C can reach
AS G through multiple paths (C-B-A-D-G, C-D-G and C-E-F-G), however, economically, the
favorable order is C-E-F-G (as E is a customer of C), C-D-G (as D is a peer partner of C)
and C-B-A-D-G (as B is a provider of C). This is in line with the nature of these routes as
customer and peer paths are completely free unlike provider paths in which the provider has to
be compensated in some way for the carried transit traffic.

SU’U
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Figure 4. Illustration of paths prioritization ac- Figure 5. The created edge according to the
cording to the highest local preference rule. strategies of players u and v.

Thesis 1.2. I have extended the model by adding the second BGP rule called highest local preference
to the analysis and I have disclosed and characterized a further refined version of the graph that I
call the “Spiderweb graph”.

Players and routing — Let P be the set of players (identified as the ASs) with cardinality
N. Recalling the rule of HLP policy a player always picks from the available VF paths according
to its local interest, which is a preference ordering based on the first edge of the path. In this
game I use the notations p (or @) and r (or ww) to denote customer-provider and peer edges,
respectively. This addition is important in order to keep the analysis clear and simple, as in several
times referring to edges with their endpoints - instead only their type - is preferable.

Strategies and topology — A strategy for player u € P is a vector of the preferred edges
to other players in the AS network; i.e. the strategy space is the set S, = {(su)vep\{u} © Suv €
{0,p,r}} where |S,| = 3¥~1. Easily, player u seeks to contact player v if s,, € {p,r}, otherwise
Suww = 0. Players announce their strategies simultaneously. Any state of the game is represented by
an undirected graph G(s) = (P, E(s)) generated by the strategies of the nodes, where E(s) is given
by E(s) = {td|syy = p A Spu = 0} U {00 |$uy € {7, p} A Spu € {r,p}}. This settlement of the edges
reflects the rational behavior of the ASs as they prefer to create peer edges over customer-provider
edges and the instantiation of peer edges requires a bilateral agreement between the corresponding
players while customer-provider edges can be created unilaterally. These can be summarized in

Fig. 5.
Payoff — The goal of the players is to minimize their costs, which for a given player v is defined
as:
1
Cu(s) = = Z das)(u, v) + ppup + @ru,, v EP (2)
N vEY link
N ink cost

communication cost



provider edges, respectively and the black nodes are the ASs of the clique K, i.e. the tier-1 ASs. The
dotted triangle indicates the customer cone of a tier-1 AS.

where

0  if there exists a VF path whose first edge is peer or provider-customer

1 if th ists at least VF path and the first edge of all of th
Ao (1, v) = if there exists at least one path and the first edge of all of them )
is customer-provider
oo if a VF path does not exist

represents the price of communication between u and v over G(s) in compliance with the VF and
HLP policies, ¢, and ¢, are fix maintenance costs of the provider and peer edges, while u, and
u, refer to the number of the p and r edges of u, respectively. Note that provider-customer edges
are considered to be financed unilaterally by the customer.

In order to find topologies that are more relevant to a realistic network game I used the following
more natural and slightly tailored equilibrium definition for this case:

Definition 3 (Pairwise Stable Nash Equilibrium (PSNE) [16]). We say G(s) constitutes a pairwise
stable Nash equilibrium if (a) it is a Nash equilibrium, (b) Yuv € E(G(s)) : Cu(s) < Cu(s') A
Cy(s) < Cy(s"), where s’ differs from s only in deleting one uv edge from G(s), (¢) Yuv ¢ E(G(s)) :
Cu(s) < Cu(s") vV Cy(s) < Cy(s"), where s' differs from s only in adding uv edge to G(s) and (d)
contains no provider loops (cycle of p edges)*.

Now I am interested in the equilibrium topologies of the game as these topologies will reflect
the consequences of the VF and the HLP rules. For the claims the following definition is needed.

Definition 4 (Spiderweb graph (Fig. 6)). A graph is a Spiderweb graph if it consists of:
1. a clique K, (representing the tier-1 ASs) comprising peer edges only

2. trees rooted at some subset of V(K,) that have customer-provider edges such that the provider
in the connection is always closer to the root than the customer

3. additional peer edges, such that Vuv,uww € G(s) : t(v) Nt(w) = 0, where t(x) is the set of
nodes in the subtree (i.e. the customer cone) of node x, including x itself.

4This requirement is fully in line with the Gao-Rexford conditions [10] ensuring BGP stability.



The first claim characterizes all meaningful states (i.e. where all the ASs can communicate
with each other) of the above game (and thus the AS topology) by identifying a graph that is
omnipresent in the Internet as a subgraph.

Theorem 2. Every meaningful outcome of the game, i.e., Y C, # oo contains the Spiderweb
graph as a spanning subgraph and every pairwise stable equilibrium (PSNE) of the game is the
Spiderweb graph itself.

The following theorem gives a high-level insight into the placement of the peer edges.

Theorem 3. If G(s) constitutes a pairwise stable equilibrium (PSNE) of the game then G is a
Spiderweb graph with max,ck, t(u) < N(¢p — @ ([V(K,)| — 1)+ 1) and Vr € Epee, \ Ek, is a
clear-cut peer edge (CPE), where CPE is a peer edge uv € G(s) for which:

o fweP:vect(w) ANuw € G(s)

Rt

e ¢, < min{ 7,

Finally the theorems lead to the following three corollaries.

Corollary 1. In a PSNE a peer edge appears only if it is in K, or both its endpoint ASs have
sizable customer cones.

Corollary 2. For PSNEs there exists an upper bound for the size of the customer cones of the
ASs in K, or more formally PSNE —> maxycy(k,)t(u) < N(pp — o ([V(K,)| — 1)+ 1).
Corollary 3. In case of a PSNE there exists an upper bound for the size of K, independent from

: pter 144/ (epter+1)2—dor
N, ie. PSNE=> |V(K,)| < 2ot len ot 7Ae

The above theorems deliver the following high-level sketch of the AS topology as a main
intuitive message: (i) it is a Spiderweb-like graph with a clique (of tier-1 ASs) in the center and
trees routed at the nodes of the clique, (ii) the peer edges appear more likely between ASs that
have sizable customer cones, (iii) the size of the clique is constrained by the maintenance cost
of peer and customer-provider edges and (iv) the largest customer cone size in the nodes of the
clique is also driven by these maintenance costs.

4.2 A Game Theory-Based AS Level Internet Model (YEAS)

Using the analytical results of Section 4.1, in what follows I define a generative® AS topology
model called YEAS that is able to create random topologies with similar statistical features.
Such a model provides the possibility to furher analyze those statistical features that would be
too complex to handle in the game theoretical framework. Besides recovering the usual features
of network models (e.g. power-law degree distribution, large clustering, small diameter etc.) I
implicitly encode the outcome of the analysis into the node and edge dynamics. Thus finally I
require YEAS to produce Spiderweb-like graphs that have correct edge labeling, realistic tier-1
clique size and realistic placement of the peer edges. The framework of YEAS is based on the
recently advocated hyperbolic space models presented in [20]. This basically dresses up a very
simple hyperbolic model with the findings of Section 4.1.

5Generative here means that the created network is the result of a deterministic link creation process, in which
the connectivity behavior of nodes is described by an algorithm (the Barabasi-Albert model is a good example for
generative models).



Thesis 2. [ have created a topology generator, called YEAS, that produces topologies based on the
analyzed Nash Equilibria (e.g. Spiderweb graph). I have given proof that YEAS generated topolo-
gies have some implicit features like realistic power-law degree distribution, clustering coefficient,
customer cone size distribution and peering likelihood. I have also compared the topologies with the
AS level Internet measured by CAIDA and shown that YEAS outperforms a potpourri of existing
models along several metrics.

4.2.1 Topology Generation Process

Node layout The nodes are distributed (still representing the ASs) quasi-uniformly on the surface
of a hyperbolic disk with radius R. This is done by assigning polar coordinates to each node as
follows: r = (1/a) acosh (1 + [cosh(aR) — 1] Uy) and ¢ = 27U, where U; and U, are independent
random variables distributed uniformly over the interval (0,1) and « is a parameter controlling
the heterogeneity of the layout.

Edge creation

To initialize take node u with the lowest radius and initialize a set X = {u}%. In the first phase
take nodes w one by one in an increasing order of their radii r,, and connect them to the oth-
ers according to the following simple rule: if Q> _ (1w, duw, 7o, Gv) < Milypp, <py, (Tws Pus T Do),
then connect w to all nodes in K with peer edges and add w to K, otherwise connect w to node
argminvmgml(rw, Guw, T, Op) With a customer-provider edge. The constant @ is a tunable model pa-
rameter controlling the size of K and I(ry, ¢y, 1y, ¢,) = acosh(coshr,coshr, — sinhr,sinhr, cos(p, —
¢y)). In the second phase every node u ¢ K connects to a node v with a peer edge if 3 wd A
LTy Gu, Ty @) < 0, where g is a parameter in the interval (0,R) for tuning peering willingness.

Thesis 2.1. [ have proved that topologies generated by YEAS have realistic power-law degree
distribution and clustering coefficient.

For proving the ability of YEAS to generate realistic power laws I show that the model generates
all edges (u, v) for which I(ry, ¢u, Ty, Py) < 0 but contains edges (u,v) for which I(ry, ¢, 74, ¢y) > 0
with negligible probability.

In the case of the high clustering coefficient if we simply but arguably ignore (at least from
the perspective of degree distribution and clustering) the negligible number of edges with length
larger than g we end up with a model readily analyzed in [20].

I have also compared YEAS generated topologies with the real AS level topology (derived from
CAIDA’s data). Fig. 7 shows the cumulative degree distribution of the real AS graph compared
to the degree distribution of YEAS with setting N = 40000, ) = 5, o = 0.55, o = 12.95 and
R = 18.5. The measured AS graph contains 41203 nodes, so I generated a similar sized topology.
The clustering coefficient for the AS graph and for YEAS are both high 0.38 and 0.69, respectively.

Thesis 2.2. [ have analyzed YEAS generated topologies along the the expected customer cone size
of the nodes and cone size distribution of the whole network. I have also compared the YEAS
generated networks with CAIDA measurements along these metrics and found good matching.

To analyze the average customer cone sizes I temporally omitted the peer edges generated by
the model as these do not affect the customer cone sizes. Then the topology generation rules

6In YEAS this set represents the clique of tier-1 ASs.
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Table 1. Comparison of a YEAS generated topology and CAIDA topology for basic metrics.

Network Nodes  Edges C. coef.  Avg. dist. Avg. degree Diameter Max. cluster # Tier-1
CAIDA top. 41203 116930 0.38 3.81 5.67 14 39327 16
YEAS 40000 115309 0.69 4.07 5.76 12 40000 16

can be translated into calculations in the hyperbolic geometry and with this I have been able to
characterize the expected customer cone size and from that the cone size distribution. This result
as the theoretical result goes hand in hand with the outcome of the simulations (Figure 8).

Thesis 2.3. I have analyzed YEAS generated topologies along another quantity which is the peering
likelthood and I have shown that it is in high correlation with the minimum of the customer cone
sizes of the ASs. I have also compared the YEAS generated networks with CAIDA measurements
along this metric.

This means that the likelihood of peer edges of
an AS that have a customer cone size to other ASs
which have larger customer cone sizes is propor-

Table 2. Comparison of network models.

tional to their cone size, and this likelihood tends | I;‘eatliir.e - NOt;mon fezmllrz NOtimon
egree distr. abele
to be 1, if the cone size is above a certain limit. This | Clustering C Spider-like SL
characteristic property is also confirmed by the sim- |Avs. distance D Peering likelihood | PL
. . . .. . Large size S Few input params FP
ulations shown in Fig. 9 and coincides with results P €D S LS. 7L P
measured on the real AS topology. ; PiRG 1/ - 7 7 - - .
o
Thesis 2.4. I have compared YEAS generated 5 et \v/' - v/ /- - - Y
topologies with CAIDA measurments and shown S dK-series |/ /' /' /' - -V
that it reflects the features of the AS level topology BA |v -V /- - - ¥
, . BRITE |V V V V/ - - - J
along several usual metrics. I have also compared it g Y1 To S A A A A A
with a potpourri of existing models and shown that 5 Hetal |V / / / - - -
it outperforms most of them. © GENESIS|V v / - &/ / / -
YEAS |V V / / 7/ J J V

For the comparison I used YEAS with the same
setting as previously (N = 40000, @ = 5, o = 0.55,
0o = 1295 and R = 18.5). Table 1 provides an overview, it can be seen that the values of the
various features are close to each other. Finally, I compared YEAS by outlining its features against
a potpourri of existing models (Table 2). YEAS covers a wide range of feature set.
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The above theoretical results show that YEAS generates realistic complex networks with proper
degree distribution, clustering and diameter, yet incorporating the findings of Section 4.1 as the
synthesized topologies are Spiderweb-like (trivially follows from the generation process), with
tunable tier-1 clique (through the @) parameter) and realistic peering likelihood.

4.3 Topological Consequences of Greedy Navigation

Since Milgram’s famous experiment [23] greedy navigability is a central issue in the theory of
complex networks, as its great communication efficiency is confirmed in small words. A plausible
explanation for the favorable navigational properties in such context is the assumed existence of
a hidden metric space underneath these networks.

Kleinberg proposed an analytic model and a working algorithm that justifies the existence of
such a small-world message forwarding [18] experienced by Milgram. In this work the world is
modeled as a two-dimensional grid (Fig. 10), where each vertex is a person and there are local
and long-distance edges between vertices. The probability of the existence of a long distance edge
is P,(u,v) = d~"(u,v), where d is the lattice distance and parameter r € [0,00). It is shown that
a simple greedy routing algorithm needs O(log®n) time to travel between any pair of nodes if and
only if » = 2 or more generally » = D, where D denotes the dimension of the lattice.
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(a) r << 2 (b) r~2 (c)r>>2

Figure 10. The effect of parameter r to the topology. Sub-figure a), b) and c) shows how likely longer
connections emerge for different values of r. In the case of r ~ 2 most of the connections will lead to
nodes relatively close to u, but there are some long connections as well, making possible of bypassing large
distances, thereby enabling shortest paths, i.e. small-world property in the network.

Ever since the introduction of Kleinberg’s lattice model 18| game theoretical investigation has
been focused on explaining how such a network emerges due to the interaction of rational, selfish
players. However, existing work assumes shortest path routing when measuring distance between
nodes. There are several reasons why this view is limited, but the most important one is that
since greedy routing is frequently used in both social and computer networks [4] to great success
then it is worth to consider “Why calculate the shortest path based equilibrium if players know they
will route in a greedy manner?”.

In the following I propose the Greedy Network Formation Game (GNFG) in which I assume
a hidden metric space underneath the network and use the length of greedy paths as the measure
of distance between players. Since shortest and greedy paths deviate in essence (see Figure 11),
this shift will substantially change the corresponding equilibria.

Thesis 3. [ have defined a game theoretical model, which describes the communication in the
complex networks more realistically, thus enable to better understand the formation process of
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Figure 11. Deviation of shortest and greedy paths in the 2D Euclidean grid between nodes (2,2) and (0,0).

such networks. I have given a proof that the existence of greedy-routable small worlds cannot be
economically justified under Kleinberg-like, constant dimensional, grid-based model. I have also
shown that replacing Fuclidean to hyperbolic space can lead to such Nash Equilibria for which the
cost 1s better than the Social Optimum for Fuclidean case.

Before introducing the game I recall the pioneering result of Kleinberg [18, 19| on greedy
routing on Euclidean lattices, as it is used extensively in the arguments that are based on the
analytical results.

Theorem 4. (Kleinberg) Suppose that network nodes are placed in a 2-dimensional Euclidean
lattice. From each node u one shortcut is added to the topology according to the distribution
P(u,v) ~ l(u,v)™", where I(,u,v) is the lattice distance between u and v. On this topology the
expected delivery time of greedy routing is:

Cilog*(n) if r=2,
Et)=< Cm@ B if 0<r<2 ,
Conr=2/=1 4f > 2,

As Kleinberg states this result readily generalizes to lattices with higher dimensions.

4.3.1 The Greedy Network Formation Game

I define the Greedy Network Formation Game (GNFG) using Euclidean lattices, since the question
is whether the Kleinberg-like grid network can emerge from the game.

Thesis 3.1. [ have defined the Greedy Network Formation Game and I have given the basic
equilibrium states, which are the D-dimensional lattice and the full graph, depending on the link
cost.

Players, lattice and greedy routing — Let P be the set of players (identified with network
nodes) with cardinality N. Players are placed into the vertices of a D-dimensional n x n x --- x n

-~

D times
lattice (i.e. n is the length of the lattice in each dimensions, so n? = N), which is folded into a

torus. The coordinate vector u = (uy,us,...,up) of player u indicates the position of u in the
lattice. Distance between two players u and v used in the greedy routing decision is calculated as
their lattice distance: [(u,v) o l(u,v) = Zil min{|u; — v;|,n — |u; — v;|}. A greedy routing step
of player u operates over this metric space by choosing the neighbor whose lattice distance is the
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smallest from target ¢. If u has no neighbor v such that [(u,t) > l(v,t) then greedy routing is in
a local minimum and fails.

Strategies — A strategy for a node u € P is to create a set of directed edges (arcs) to
other nodes in the network; the strategy space is S, = 2P\#}. Let s be a strategy vector:
s = (80,81...5n-1) € (S0,51...Sy-1) and G(s) be the graph defined by the strategy vector s
as G(s) = U,'(i x s;). A mixed strategy is a probability distribution over the above (pure)
strategies.

Payoff — The goal of the players is to minimize their cost function which is calculated as

follows:
Cu(s) = dais)(u,v) + ©ls,|, u,veP, 4
(s) %G()( ) lsokll (4)
ink cost

communication cost

where dgs)(u,v) is the number of nodes involved in the greedy routing process between u and v
(including v itself) over G(s) and ¢ is the constant cost of creating one arc. By definition if greedy
routing fails between v and v then dg(s)(u,v) = co. This setting ensures that we get connected
topologies in which there always exists a greedy path between any arbitrary pair of nodes.

Special cases for ¢

[ have characterized the equilibria of the game for special regions of ¢: (i) if 1 < ¢ = O(N), any
graph emerging from any NE or social optimum in the GNFG possesses the D-dimensional lattice
as a subgraph, (i) if ¢ = Q (N'*!/P) then the D dimensional lattice is a unique NE in GNFG
and (i77) if ¢ < 1 then the full graph is a unique NE in the GNFG.

4.3.2 Simplified Greedy Network Formation Game

Deriving results for the GNFG in the region 1 < ¢ = O(N'*/P) turns out to be a highly non-
trivial problem. For the sake of tractability, in the following I restrict the argument to the one
dimensional case and introduce the Simplified Greedy Network Formation Game (SGNFG). I
will generalize the results later on. Any equilibrium or optimum solution of a Greedy Network
Formation Game in one dimension always possesses the ring as a subgraph. Therefore I will play
the SGNFG on a bi-directional ring, which implies that greedy routing will never fail. On this
ring I define the SGNFG as follows: each player can create one directed edge only, which means
that the strategy space reduces to a scalar e,, which indicates the endpoint of the extra edge for
player v € P. This also means that any player u will have a cost of 3¢ < ¢, < oc0.

Social Optimum, Price of Anarchy and Price of Stability

Before the analysis it is important to mention that a NE is not necessarily optimal for players.
In games with multiple equilibria, different equilibria can have (widely) different payoffs for the
players. In order to be able to evaluate the different equilibria and to get a more precise picture
about a game two distinguished metrics are defined, which are the Price of Anarchy (PoA) and
the Price of Stability (PoS). In order to be able to define these precisely, first we need to define
what the optimal outcome of a game is, that is called Social Optimum (SO).

Definition 5. SO refers to an equilibrium state that mazimizes the social welfare (i.e. minimizes
the sum of all cost) even if its emergence requires a central coordination force (i.e. the independent
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decision-making is taken away from players). Formally, a strategy vector s € S constitutes a SO

if: Zu [u(sw S—U) > Zu [u(S;, S—U)'
Based on the Social Optimum we can define PoA and Pos as follows:

Definition 6. The PoA quantifies the loss to selfishness by comparing the performance at Nash
equilibrium to the optimal state of a game. It is calculated as the ratio between the worst Nash

equilibrium and the optimal outcome (SO). Formally: nr?;;szg“ 31((277211;))7 where ¢ is the set of
equlibria.

Definition 7. The PoS is an optimistic form of the PoA as it shows how far the best-case scenario
of the game, that is created by selfish players, lies from the optimum. Formally, the PoS of a game
maxsee D, Tu(su,5—u)

maXsecgs Zu Iu(séus—u) 7

is the ratio between the best Nash equilibrium and the optimal outcome (SO):
where ¢ is the set of equlibria.

Based on these definitions I can characterize the different equilibria of the SGNFG.

Thesis 3.2. I have defined the Simplified Greedy Game, that let us calculate equilibrium states in
the region 1 < o = O(N'*YP) . I have calculated the price of the Social Optimum = O(N?1log*(N),

Price of Anarchy = (%) and Price of Stability = <L/3> and I have shown that there

log”(N)
1s not exist a Kleinberg-like solution in the game.

When seeking for equilibrium solutions I will use mixed strategies, which means that the
strategy of u is a random variable X indicating where to connect its extra edge. For the distribution
P(X =) = py,py = Pu—1 = Ppuy1 = 0 and Y 5 p, = 1 holds. Throughout analysis I - similarly
as Kleinberg - assume that the distribution Px € P is decreasing and monotone, formally, p, < p,
if {(u,v) > l(u,w) and w ¢ {u — 1,u,u + 1}. This assumptions is fairly realistic, since otherwise
the network does not bearing the properties of the underlying space and renders greedy routing
meaningless. Let A(u,v) denote the average number of greedy steps required to get from u to v.

Theorem 5. The cost of the optimal solution of SGNFG is O(N?log®(N)).

Price of anarchy in the SGNFG

Theorem 6. The bi-directional Mébius ladder [14], in which the extra edges of the player are

directed to exactly the opposite player on the one dimensional ring, is always a Nash equilibrium
with total cost N; The Price of Anarchy in the SGNFG is therefore of Q (%)

Price of Stability in the SGNFG

To obtain equilibrium solutions the following two lemmas are needed. Let A.(u,v) denote the
average number of greedy steps from u to v if player u has its extra edge connected to player e.

Lemma 1. The larger the distance between two players, the more number of greedy steps is needed
to travel between them on average. Formally: If l(u,v) < l(u,w), then A(u,v) < A(u,w) for
u,v,w € P.

Lemma 2. If player u chooses a more distant player to connect its extra edge then the cost of u
reduces. Formally: Y~ p Ay(u,2) > > p Aw(u, ), if l(u,v) < l(u,w).
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From Lemma 1 and 2 one I can show, that the best strategy a player can have at any stage of
the game is to uniformly choose among other players. The cost of player wis ¢, =, fu A(u,v) =
D ot 2ajeP\fu—tuut1) Aj (W, v)pj, which can be transformed to the form ¢, = 3 o psf(s).

Theorem 7. If f(s) is a monotonically decreasing function of [(u, u+s) then in any given situation
of SGNFG, player u’s best response to the strategies of the other players is choosing the endpoint
of its extra link uniformly. Formally: argmin,cp o psf(s) = uniform.

Corollary 4. The only Nash equilibrium of the SGNFG in mized strategies is the case when all
players connect their extra edge uniformly at random.

Now that there is a clue for the structure of the network in equilibrium states, the cost of such
equilibria can be calculated by borrowing again the results of Kleinberg.

Theorem 8. The best Nash equilibrium of the SGNFG is of Q(N®3), therefore the Price of
Stability is of Q (L)

log”(N)

According to [18] from the distributions of the form p, ~ l(u,v)™", r = D eventuates the
only setting that produces a small-world topology, where the length of the greedy paths scales
polylogarithmically with N. The conclusion from Corollary 4 is that » = 0 is the only possible
setting to obtain a Nash equilibrium. This immediately leads to the following observation:

Proposition 1. Kleinberg’s optimal setting is not a Nash equilibrium, therefore small-world equi-
librium solution does not exists for the SGNFG.

4.3.3 Generalization of the Results

In the previous section I presented the in-depth analysis of the SGNFG and drew the negative
conclusion that incorporating greedy routing within the network creation game takes the equilib-
rium topologies very far from the social optimum. What is more I have shown that a small-world
network cannot be an equilibrium solution of the game. One might argue that the results may be
valid only within the simple framework of SGNFG. Here I take a short look on the statements in
more general settings of the game.

Thesis 3.3. [ have extended the Simplified Greedy Game to be able to introduce some more general
settings, like multiple edges, distance-dependent link costs and multiple dimensions and I have
shown that the Klienberg-like topology is still not an equilibrium state of the game.

Multiple edges

In the simplified setting a player could have only one extra edge in addition to its lattice edges,
however, in a general case a player can have multiple edges. Now I argue that if each player u
can only afford a constant number of edges C,, then the equilibrium solution remains qualitatively
the same. In the multiple edge case the cost of player u can be transformed to the form ¢, =
Y ecs Psf(s) similarly to the single extra edge case (calculated from Lemma 1 and 2). Theorem 7
proves that the uniform distribution minimizes such cost functions. This also means that the best
strategy that player u can have is to distribute its C', edges uniformly in the lattice.
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Distance-dependent link costs

In a general setting the cost of an edge may depend on the distance between its endpoints, which
gives a more complex cost function

Cu =Y Do (w(u,v) + Z&(w@) = pf(s). (5)

veEP zeP seS

In this case however, f(s) is not necessary monotonic, so I cannot prove that the uniform dis-
tribution is the only NE. What I can show is that a distribution which eventuates strict Nash
equilibrium is uniform until a given lattice distance and zero otherwise.

Theorem 9. If p € P then 3f() for which p is weak Nash equilibrium. If p € P is a strict Nash
equilibrium, then 3r € (0,1) that ps € {0,r}.

Proposition 2. A small-world topology can’t be a strict Nash equilibrium.

Multiple dimensions

For the sake of simplicity I carried out the proofs for the one dimensional case. In the following I
illustrate that the argument can be extended to the finite D-dimensional case. First observe that
the simple statement of Lemma 1 (the more distant a player is the more greedy steps are needed to
travel between them) is the only result where the one dimensional assumption is exploited. Now
I illustrate that Lemma 1 readily generalizes to higher dimensions.

Figure 12. The average number of greedy steps (A(u,v)) between a reference player u = (0,0) and the
other players in the two dimensional lattice, if py, ~ l(u,v)° (left), py ~ L(u,v)~t (center), py ~ l(u,v) ™2
(right).

Figure 12 shows the average number of greedy steps (A(u,v)) required to travel between a
reference player (at the center of the figure) and the other players in the two dimensional lattice.
If w denotes the neighbor of u who is closest to v, then A(u,v) can be calculated by following
recursion:

Alu,v) = prAx(u, v) = Z pe(1+ A(z,v))+ [ 1 - Z pe | (1+ A(w,v)).

z€P x:l(z,v)<l(w,v) z:l(z,v)<l(w,v)

Figure 12 supports the conjecture that A(u,v) grows with the lattice distance if the game is played
in multiple dimensions.
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Conjecture 1. Small-world topologies cannot emerge as equilibria from the SGNFG even if the
dimension of the lattice is raised to an arbitrary constant value. This means that the existence of
small-worlds cannot be economically justified under the Kleinberg-like constant dimensional grid-
based models.

4.3.4 Hyperbolic Space

The results support the claim that small-world networks cannot be equilibrium solutions of the
Greedy Network Formation Game even if the game is played under fairly generalized conditions.
So the question arises: “How can small-world topologies emerge?” In the hyperbolic space I prove
that socially optimal solutions can readily emerge from the Greedy Network Formation Game.

Thesis 3.4. [ have proved that by replacing Euclidean to hyperbolic space then any emerging Nash
Equilibrium contains a tessellation for that the cost is better than the Social Optimum for Fuclidean
case, which is O(N?log(N)) and O(N?log*(N)), respectively.

For the investigation I use the Poincaré disk model [2] of the two dimensional hyperbolic space
as this model makes the calculations easier here. In this space player v has a coordinate vector
u = uj,uy € [0,1) and the distance between u and v is calculated according to the Poincaré
distance function:

dy(u,v) ) (u,v) = arccosh (1+2 [l — V][ )
) G (=Tl V)
where ||z|| stands for the Euclidean norm of .

The players are placed at equal distances from each other similarly to the case of the two
dimensional Euclidean lattice, thus the players will be located in the vertices of a so-called hyper-
bolic tessellation (see Figure 13). A tessellation [17] can be characterized by a pair (v, k) where
v stands for the vertex number of its constituent polygons and x denotes the number of meeting
polygons at a given vertex. For (v, k), % + % < % must hold. A graph T'(V, E) can be constructed
from the tessellation if its vertices are considered as the vertices of the graph and the sides of the
polygons as edges.

| o Generated topologies
—— Logarithmic fit

00 400 e0  s00 10000

4000 a0
Number of players

Figure 13. (3,8) (left) and (4,5) (middle) hyperbolic tessellations and the average distance between the
vertices in the (4,5) hyperbolic tessellation as a function of the number of vertices (right).

In this setting of GNFG, similarly to the Fuclidean game the following lemma holds.
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Lemma 3. Any graph emerging from any Nash equilibrium or Social Optimum in the two dimen-
sional hyperbolic GNFG possesses the underlying tessellation graph T as a subgraph.

Lemma 4. The number of vertices in a (v, k) tessellation grows exponentially with the number of
layers, thus the diameter of the tessellation graph T is of O(log N).

From Lemma 4 we can see that using only the edges of the tessellation (without any extra
shortcut edges) player v can be reached from u in O(log(N)) number of greedy steps (see Figure
13). The total cost of the GNFG is therefore of O(N?log(N)), which is better than the Social

Sptimum for Euclidean case.

5 Applications

To conclude the dissertation here I discuss how the obtained results can be used to further extend
our knowledge about the topology of complex networks. In this chapter I list some application
scenarios for each chapter where results are introduced.

Topological Consequences of the BGP routing policy

Internet specific knowledge can greatly help to improve the performance of the network. The more
insight we gather on how BGP drives the topology formation of the Internet’s AS level network the
easier it is (i) to design better routing policies, (ii) to understand why and how the traffic emerges
and (iii) to optimize the current network structure. The most specific example is clearly the
area of Content Delivery Networks (CDN) [24], where global topological peculiarities are highly
exploited e.g. in surrogate and cache placement strategies or request routing mechanisms. Note
that CDN is just a narrow segment of the whole spectrum. To give a few more examples, the
placement of data centers [12], peer-to-peer networks |8, 21|, traffic engineering [3|, business based
AS peering strategies |9] can also largely benefit from Internet topology related knowledge. The
investigation of the AS topology is also a popular topic in the network science community that
consolidates researchers from diverse or multidisciplinary research areas [5, 6, 1, 7, 26, 22, 25].

A Game Theory-Based AS Level Model (YEAS)

Topology generators are often used in diverse testing processes of different applications. Testing of
novel routing policies, traffic handling or security algorithms requires realistic topologies that have
some randomness but bear similar statistical features to real networks at the same time. Certainly
the needs are not exactly the same in all cases, so the topology generators can be categorized along
the needs they serve. YEAS can be useful in situations when quickly generated large topologies
with the characteristics of the Internet’s AS level network are needed, including labeled nodes and
connections according to business considerations.

Topological Consequences of the Greedy Navigation

Greedy routing is the most accepted policy in describing the communication process of real-world
complex networks. We have empirical evidences (e.g. the Milgram experiment) that in many cases
this method enables efficient information distribution among network nodes. However, creating a
game that explains the emerging process of such networks had been a non-trivial issue in game
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theory until recently. My results are cited in two papers, by Yang et. al [27] and Gulyas et. al
[13]|, where the authors manage to explain the emergence of such networks.



19

References

[1] Réka Albert, Hawoong Jeong, and Albert-Léaszl6 Barabasi. Error and attack tolerance of
complex networks. Nature, 406(6794):378-382, 2000.

[2] J.W. Anderson. Hyperbolic geometry. 2005.

[3] Daniel Awduche et al. Overview and principles of Internet traffic engineering. Technical
report, RFC 3272, May, 2002.

[4] Mm Boguna and D. Krioukov. Navigating ultrasmall worlds in ultrashort time. Physical
Review Letters, 102(5):058701, Feb 2009.

[5] M. Boguna, D. Krioukov, and K. C. Claffy. Navigability of complex networks. Nature Physics,
5(1):74-80, 2009.

[6] M. Boguna, F. Papadopoulos, and D. Krioukov. Sustaining the Internet with hyperbolic
mapping. Nature Communications, 1(6):1-8, 2010.

[7] Claudio Castellano and Romualdo Pastor-Satorras. Competing activation mechanisms in
epidemics on networks. Scientific Reports, 2, 2012.

[8] Miguel Castro, Peter Druschel, Y Charlie Hu, and Antony Rowstron. Topology-aware routing
in structured peer-to-peer overlay networks. In Future Directions in Distributed Computing,
pages 103-107. Springer, 2003.

[9] David Clark, William Lehr, and Steven Bauer. Interconnection in the Internet: the policy
challenge. In Research Conference on Communication, Information and Internet Policy, 2011.

[10] L. Gao and J. Rexford. Stable internet routing without global coordination. IEEE/ACM
Transactions on Networking, 9(6):681-692, 2001.

[11] Lixin Gao. On inferring autonomous system relationships in the internet. IEEE/ACM Trans-
actions on Networking (ToN), 9(6):733-745, 2001.

[12] Albert Greenberg et al. The cost of a cloud: research problems in data center networks. ACM
SIGCOMM CCR, 39(1):68-73, 2008.

[13] Andras Gulyas, Jozsef Biro, Attila Kérosi, Gabor Rétvari, and Dmitri Krioukov. Navigable
networks as Nash equilibria of navigation games. Nature Communications, Vol. 6, 2015.

[14] R.K. Guy and F. Harary. On the Mobius ladders. Canadian Mathematical Bulletin, 10:493—
496, 1967.

[15] G. Huston. Interconnection, peering and settlements: Part 1. Internet Protocol Journal, 2(1),

JUN 1999.

[16] Matthew O Jackson. A survey of network formation models: stability and efficiency. Group
Formation in Economics: Networks, Clubs, and Coalitions, pages 11-49, 2005.

[17] D.E. Joyce. Hyperbolic tessellations.  Clark University. http://aleph0. clarku. edu/”
djoyce/poincare/poincare. html. Updated December, 1998.



[18]

[19]

20]

[21]

22]

23]
[24]

[25]

[26]

27]

20

J. Kleinberg. The small-world phenomenon: an algorithm perspective. In Proceedings of
STOC 00, pages 163-170, 2000.

J. Kleinberg. Complex networks and decentralized search algorithms. In Proceedings of 1CM,
volume 3, pages 1019-1044. Citeseer, 2006.

D. Krioukov et. al. Hyperbolic geometry of complex networks. Physical Review F,
82(3):036106, 2010.

Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, Steven Lim, et al. A survey
and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys and
Tutorials, 7(1-4):72-93, 2005.

Sergei Maslov, Kim Sneppen, and Alexei Zaliznyak. Detection of topological patterns in
complex networks: correlation profile of the internet. Physica A: Statistical Mechanics and
its Applications, 333:529-540, 2004.

Stanley Milgram. The small world problem. Psychology Today, 2(1):60-67, 1967.

Mukaddim Pathan and Rajkumar Buyya. Content Delivery Networks, chapter A Taxonomy
of CDNs, pages 33-77. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

V Rosato, L Issacharoff, S Meloni, D Caligiore, and F Tiriticco. Is the topology of the
Internet network really fit to sustain its function? Physica A: Statistical Mechanics and its
Applications, 387(7):1689-1704, 2008.

Bo Xiao, Lian-dong Liu, Xiao-chen Guo, and Ke Xu. Modeling the ipv6 internet as-level
topology. Physica A: Statistical Mechanics and its Applications, 388(4):529-540, 2009.

Zhi Yang and Wei Chen. A game theoretic model for the formation of navigable small-world
networks. In Proceedings of the 24th International Conference on World Wide Web, pages
1329-1339. ACM, 2015.



21

References

Journal papers (11.33 p)

[J1] David Szabo, Andras Gulyas. Notes on the Topological Consequences of BGP Policy Routing
on the Internet AS Topology. Lecture Notes in Computer Science Volume 8115, 2013, pp 274-
281. (6 p)

[J2] David Szabo, Attila Korosi, Jozsef Biro, Andras Gulyas A Deductive Way of Reasoning
about the Internet AS Level Topology. Chinese Physics B.

(6/3=2 p)

[J3] Gulyas Andras, Korosi Attila, Szabo David, Biczok Gergely. On greedy network formation.
SIGMETRICS PERFORMANCE EVALUATION REVIEW, 40:pp. 49-52, 2012. (6/3=2 p)

[J4] Szab6é David, Gulyas Andras, Csernai Marton, Heszberger Zalan. Strukturafiiggetlen
cimzésen alapuld 6nszervezéds tvonalvilasztasi architektira. HIRADASTECHNIKA LXVI.
évfolyam, 2011/3: pp. 2-10, 2011. (4/3=1.33 p)

Conference papers (4.25 p)

[C1] Szabé David, Gulyas Andras. Jelterjedési utak topologiara gyakorolt hatasanak vizsgalata
jatékelméleti modszerekkel. Mesterproba konferencia, 1. helyezés, 2012. (1 p)

[C2] David Szabo, Andras Gulyas, Frank H.P. Fitzek, Daniel E. Lucani. Towards the Tactile
Internet: Decreasing Communication Latency with Network Coding and Software Defined
Networking. European Wireless 2015. (3/3=1 p)

[C3] David Szabo, Andras Gulyas, Balazs Sonkoly, Felician Nemeth, Frank H.P. Fitzek. Towards
the 5G Revolution: A Software Defined Network Architecture Exploiting Network Coding as
a Service. SIGCOMM 2015.

[C4] Andras Gulyas, Attila Kérosi, Gabor Rétvari, Jozsef Biro, David Szabé. Brief Announce-
ment: Network Formation Games Can Give Rise to Realistic Networks. In: 31st Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing. Madeira, Portugalia,
2012.

[C5] David Szabé, Csernai Méarton. Self organizing structurless routing architecture. In:
POSTER 2011: 15th International Student Conference on Electrical Engineering. Praga,
Csehorszag, 2011. (3/2=1.5 p)

[C6] Gabor Rétvari, David Szabd, Andras Gulyas, Attila Korosi, Janos Tapolcai. An
information-theoretic approach to routing scalability. ACM Hotnets 2014. (3/4=0.75 p)

Independent Citations

[J1-1] Lenzner, Pascal. Greedy selfish network creation. Internet and Network Economics. Springer
Berlin Heidelberg, 2012. 142-155.

[J1-2] Yang, Zhi, and Wei Chen. A Game Theoretic Model for the Formation of Navigable Small-
World Networks. Proceedings of the 24th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee, 2015.



22

[J1-3] Zolanvari, Maede. SDN for 5G. CSE570S: Recent Advances in Networking, available:
http://www.cse.wustl.edu/ jain/cse570-15/ftp/sdnforbg.pdf.

[J1-4] Do-Duy, Tan, and M. A. Vazquez-Castro. Network Coding function virtualization. Signal
Processing Advances in Wireless Communications (SPAWC), 2016 IEEE 17th International
Workshop on. IEEE, 2016.

[J1-5] Bouzghiba, Soukaina, et al. Towards an Autonomic Approach for Software Defined Net-
works: An Overview.

[J1-6] Maier, Martin, et al. The tactile internet: vision, recent progress, and open challenges.
IEEE Communications Magazine 54.5 (2016): 138-145.

[J1-7] Heinonen, Johanna, et al. Mobility management enhancements for 5G low latency services.
Communications Workshops (ICC), 2016 IEEE International Conference on. IEEE, 2016.

[J1-8] Vukobratovic, Dejan, et al. CONDENSE: A Reconfigurable Knowledge Acquisition Archi-
tecture for Future 5G IoT. IEEE Access 4 (2016): 3360-3378.

[J1-9] Confidential, C. O. OpenLab: Extending FIRE testbeds and tools, FP7 EU project Deliv-
erable D2. 1 Experimental plane—Experiment Controllers.



	Introduction
	Research Objectives
	Methodology
	New Results
	Consequences of the Border Gateway Protocol
	The Valley-Free Game
	The Highest Local Preference Game

	A Game Theory-Based AS Level Internet Model (YEAS)
	Topology Generation Process

	Topological Consequences of Greedy Navigation
	The Greedy Network Formation Game
	Simplified Greedy Network Formation Game
	Generalization of the Results
	Hyperbolic Space


	Applications
	Bibliography
	Bibliography

