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Abstract

Knowing more about the topology formation of complex networks – like social net-
works, biological networks or the Internet – is of great importance. Such knowledge
can help us gain insight into the decision making process of individuals in the network
and understand the principles that govern the emerging topological features. How-
ever, despite the large existing literature from multidisciplinary research areas, our
knowledge is still limited and incomplete. In general, we have valuable information
about network dynamics from multiple aspects, but still the topological footprints in-
flicted by routing policies, which is one of the most determining factors on the resulting
network, is an unacquainted aspect.

I aim to fill this gap by investigating the topology formation effects of different
routing policies connected to complex networks. In order to do this I design analytical
game theoretical models in which the policy rules exist in their pure and realistic
form, carefully separated from other factors that could confuse the analytic inference.
Throughout the analysis I identify the equilibrium states that emerge as a direct
consequence of the used routing policies.

In this dissertation two fundamental routing policies are discussed. First I focus
on the Border Gateway Protocol that encompasses the inter-domain routing policies
on the Internet autonomous system level topology, and within that the two most im-
portant rules called valley-free and highest local preference rule. After that I broaden
the context from the Internet specific routing policies to investigate greedy naviga-
tion, the most accepted routing policy of general complex networks. Finally, I give
an overview about the applicability of the presented results.
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Kivonat

A komplex hálózatok – mint a közösségi hálózatok, biológiai hálózatok vagy az Inter-
net – topológia formálódásával kapcsolatos ismeretek nagy fontossággal bírnak. Az
ilyen jellegű tudás betekintést enged a hálózaton belüli szereplők döntéshozási folya-
mataiba, továbbá segít megérteni azokat az elveket, amelyek a kialakuló topologikus
tuljadonságokat megszabják. Azonban a hatalmas - multidiszciplináris kutatási terü-
letekről érkező - szakirodalom dacára jelenlegi tudásunk továbbra is korlátozott, nem
teljes. Általánosságban elmondható, hogy értékes eredmények születtek a hálózatok
dinamikájáról, méghozzá különböző aspektusok mentén, viszont az útvonalválasztási
irányelvek topológikus lenyomatainak vizsgálata (amely a hálózatformálódás egyik
legmeghatározóbb tényezője) továbbra is meglehetősen hiányos terület.

Célom ennek a hiánynak a pótlása, azáltal, hogy különböző útvonalválasztási
irányelvek topológia formálódásra gyakorolt hatását visgálom. Ehhez olyan anali-
tikus játékelméleti modelleket definiálok, melyek az irányelveket, szabályokat tisztán,
realisztikus formában tartalmazzák, óvatosan elkülönítve azokat olyan más tényezők-
től, amelyek megzavarhatja az analízist. A vizsgálatok során azonosítom az egyensúlyi
állapotokat, amelyek az egyes útvonalválasztási irányelvek közvetlen következménye-
ként foghatók fel.

A disszertációban két alapvető útvonalválasztási irányelv kerül tárgyalásra: elő-
ször a Border Gateway Protocol-ra fókuszálok, amely az Internet autonóm hálózatai
közötti útvonalválasztási elveket tartalmazza, azon belül pedig a két legfontosabb
szabályra a valley-free és a highest local preference szabályra. Ezt követően szélesí-
tem a kontextust és az Internet-specifikus útvonalválasztási irányelvekről áttérek az
ún. mohó navigációra, ami jelenleg a komplex hálózatok legáltalánosabban elfogadott
útvonalválasztási irányelve. Végül egy általános áttekintést adok a disszertációban
tárgyalt eredmények alkalmazhatóságáról.
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Chapter 1

Introduction

The spreading of computers and communication networks drove the network research
towards new directions in the last decades. The new infrastructure enabled to gather
and analyze data on a scale far larger than previously was possible. This change
shifted the focus from the analysis of small networks - and the properties of individual
connections within them - to considerating large-scale statistical properties and placed
complex networks in the center of interest. This means even though studies used to
consider networks with just up to hundreds of nodes, nowadays it is not uncommon
to see networks with millions of nodes.

Knowing more about real world networks has great importance as a wide range
of networks belong to this group such as the Internet, social networks or biological
networks. However, the investigation of these networks requires not only to change
the set of reasonable questions but also the used methods. Nowadays research can be
described along three main activities: (i) find and highlight macroscopical sta-

tistical properties such as degree distribution, path length or clustering that char-
acterize the structure of the networks and suggest ways to measure these properties,
(ii) create models that enables us to understand the meaning of these properties
and how they influence each other, and (iii) predict the behavior of the networks
based on these metrics.

The thing these approaches have in common is that all are tightly connected to
the topology of the network. This is not a surprise at all as the topology directly
affects how a network sustains to its function, which ultimately breaks down to how
effectively the nodes in the network can communicate with each other. A trivial
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Figure 1.1: Policy drives topology: We have three nodes (A,B,C) over which we
decide to build a network. The characteristics of the possible edges (A,B), (A,C),
(B,C) are defined by a triplet: latency, bandwidth and reliability (l, b, r). Now we
have to decide what topology should be built. Clearly, if the routing policy is the
shortest path policy, then all the links have to be used. If the policy is the widest path,
meaning that the highest bandwidth is preferred between the nodes, then the third
topology from the left is the appropriate choice. Finally, if the policy is the most
reliable path policy then the corresponding network will be the rightmost topology.

example for this topological influence is that information can flow only along the
existing connections among nodes. On the other hand, if we consider the network
as a constantly altering dynamic system – which is true for all real networks – then
the way of communication also has a crucial effect on the topology. To make this
statement clear, let us define a bit more precisely what we mean by “the way of
communication”. In every network where there is communication the preferred routes
for the information flows emerge eventually. The preferences that drive this process
can be described by a set of rules what we collectively call routing policy. The routing
policy naturally dictates that only those connections are created and kept that are
remunerative for efficient communication. To illustrate of this idea consider the simple
example in Fig. 1.1.

Based on this mutual correspondence between the network topology and the used
routing policy we can say that understanding the topological footprint of a routing
policy can give valuable insight into the topological properties of a real network. This
insight is somewhat complementary to the existing results as the usual approaches
do not really consider routing policies or assume shortest path communication which
is a highly simplified view. In this dissertation two fundamental routing policies are
discussed: (i) the Border Gateway Protocol (BGP) [49], that encompasses the
inter-domain routing policies on the Internet autonomous system (AS) level topology
and within that the two most important rules called valley-free (VF) and highest
local preference (HLP) rule, and (ii) the greedy routing policy, that is a promising
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candidate as the navigation method of natural complex networks [14].

In Chapter 2 I define a game theoretical model that enables to investigate the
topology forming effects of the BGP routing policy in an analytical way. As a result I
show a subgraph that is present in the topology and can be considered as the natural
consequence of the VF rule. As the next step I extend the model by adding the HLP
rule and I describe a further refined version of the subgraph obtained from the first
model, that I call the Spiderweb graph. In Chapter 3 I show the existence of such
a subgraph in the Internet’s AS level topology through measurements and design
a topology generator, based on the game theoretical results. I show that although
the model is very simple still the generated topologies reflect the features of the
AS level topology along several metrics. I also provide a comprehensive comparison
with existing topology generators. In Chapter 4 I broaden the context from the
Internet specific routing policies to investigate the greedy navigation that is the most
accepted routing policy of general complex networks. For the analysis I create a model
that describes the communication more realistically than previous game theoretical
models, namely, instead of shortest path nodes I use greedy path forwarding. I prove
that in the Euclidean space the emergence of topologies on which we understand the
principles of greedy navigation, and which also inspire many algorithms, cannot be
justified through the interaction of rational, selfish players. I also present a brief
outlook on how the situation changes if the hyperbolic space is used instead of the
Euclidean. Finally, the applicability of the results is discussed in Chapter 5.

1.1 Definitions and Notations

In this chapter I give an overview of the important definitions and notations from the
field of graph theory, game theory and hyperbolic geometry that are used throughout
the dissertation. It is not my intention to cover any of the following topics in full-
depth, the list of definitions and examples are merely the most essential ones.

1.1.1 Graph Theory

Graph theory is a natural framework for the exact mathematical treatment of net-
works, since networks can be easily represented by grahps. Network science uses
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graphs extensively for the research of complex networks which led to several new
definitions in the last decades. The most important ones necessary for understanding
the dissertation are listed in the following table.

Basic Definitions

graph A graph G = (V,E) consists of two sets V and E, where V = {n1, n2, ..., nN} and
E = {e1, e2, ..., eK} refer to the nodes (vertices) and links (edges) of the network,
respectively. A node is referred to by its order i in the set of V. In a graph each
edge is defined by a pair of vertices i and j and denoted as (i, j) or eij (in a directed
graph eij 6= eji).

subgraph A subgraph G′ = (V′,E′) of G = (V,E) is a graph such that V′ ⊆ V and E′ ⊆ E.
In the following I will refer to a subgraph G′ as a proper subgraph of G, so either
V′ ⊂ V or E′ ⊂ E.

complete
graph

A complete graph KN is a graph with N vertices in which every pair of vertices is
connected.

clique A clique C = (V′,E′) of G = (V,E) is a complete subgraph of G.

path A path from vertex i to vertex j is an alternating sequence of adjacent nodes and
edges that begins with i and ends with j and in which no vertex is visited more
than once.

shortest path A shortest path is the path of minimal length between two vertices. In the disser-
tation length is defined as the number of hops.

diameter The diameter of G is equal to the longest shortest path.

degree The degree ki of a vertex i is the number of edges that end at that vertex. In
the case of a directed graph the degree of the vertex has two components: (i) the
number of outgoing edges (referred to as the out-degree of the vertex) and (ii) the
number of incoming edges (referred to as the in-degree of the vertex).

Network Science Definitions

small world
property

The small world property refers to feature that the average distance L between
two arbitrarily chosen vertices is proportional to the logarithm of the number of
vertices N in G, i.e. L ∼ log(N).

degree
distribution

The degree distribution P (k) is the most basic topological characterization of a
graph G which is defined as the probability that a vertex chosen uniformly at
random has degree k, or equivalently, as the fraction of vertices in the graph having
degree k.
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clustering
coefficient

The clustering coefficient of a selected vertex is defined as the probability that
two randomly selected neighbors are connected to each other, i.e. it measures
the degree of how cliquey the network is and it is calculated as the average
of C = 1

N

∑N
i=1 ci, where ci = 2·{number of links among neighbors}

ki(ki−1) is the clustering
coefficient of vertex i with degree k.

scale-free
network

A scale-free network is a network whose degree-distribution follows a power-law,
at least asymptotically. That is, the fraction P (k) of nodes in the network having
k connections to other nodes goes for large values of k as P (k) ∼ k−γ , where
2 < γ < 3.

complex
network

A complex network is a network which has the following topological features: (i)

small world property, (ii) power-law degree distribution and (iii) high clustering
coefficient.

1.1.2 Game Theory

Game theory is the study of mathematical models that describe how conflict and
cooperation between intelligent, rational decision-makers affect each other’s outcomes.
Game theory has a very extensive area of use including economics, political science,
psychology, computer science and biology that spawned numerous types of games and
approaches. To catch the idea of this approach I shortly introduce one of the most
well-known and deeply investigated games, the Prisoner’s dilemma [77].

Prisoner’s Dilemma. This game is about a situation in which two criminals are
under interrogation for a crime. The interrogator officer make the same offer for each
criminal, which is to confess the crime or to remain silent. If neither of them confesses
the charge against them cannot be proved and both will serve a one-year prison term
for lesser offenses. If only one of them confesses, his term will be reduced to 1/2 year
and in return he will be used as a witness against the other, who will be sentenced to
10 years. If both of them confess, this counts as a mitigating circumstance and they
both end up with 8 years. These choices eventuate four possible outcomes, which can
be summarized in a 2x2 matrix (Fig. 1.2).

It is easy to see that the common interest of the criminals would be to remain
silent because in this case they will be sentenced only to one year each. However, they
have to make their choice independently without knowing in advance how the other
would decide, so they cannot make sure that the other would be cooperative. In this
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Figure 1.2: Cost matrix of the Prisoner’s Dilemma

situation the only stable solution of the game is that both prisoners confess because
choosing to confess always ends up with a better outcome from the perspective of
both individuals (1/2 and 8 versus 1 and 10 years). This Prisoner’s Dilemma type of
situation arises often in reality, such as in the case of overfishing, traffic policy of ISPs,
nation-states stockpiling nuclear weapons or athletes using performance-enhancing
drugs.

Modeling these situations with games can help us to understand which outcomes
will likely happen and how the motivations of participants drive these. Another appli-
cation is to recognize whether we face a well-known, analyzed game-like situation and
based on the derived findings act proactively to avoid these. For example, Prisoner’s
Dilemma-like situations can be resolved by building trust between participants - e.g.
with a contract - that ensures cooperative behavior.

Defining Games. Generally a game can be described by three components:
players, strategies and payoffs. Formally, such a game consists of a set P of players
(intelligent rational decision-makers) with cardinality N . Each player u has its own
set of possible strategies Su describing the possibilities how u can act. During the
game each player u selects a strategy su ∈ Su and each state of the game is represented
by the strategies of players s = (s1, ..., sN).

The strategies s ∈ S selected by the players determine the outcome for each player.
To specify the game, we need to give a preference ordering on these outcomes for each
player by giving a complete, transitive and reflexive binary relation on the set S of all
strategies. Given two elements in S, the relation for player u says which of these two
outcomes u weakly prefers; we say that u weakly prefers s1 to s2 if u either prefers
S1 to S2 or considers them as equally good outcomes. The simplest way to specify
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preferences is by assigning for each player a value to each outcome. In some games
it is natural to think of the values as the payoffs to players or in others as the cost
incurred by players,Iu : Su → R and Cu : Su → R, respectively. Actually, costs and
payoffs can be used interchangeably, because Iu(s) = −Cu(s) [77].

Since every player has its own incentives and it is rare that one’s optimal strategy
does not interfere with others’ there is often a trade off among players. A desirable
game-theoretical solution for this situation when individual players act according to
their incentives on maximizing their own payoff. This idea is best captured by the
notion of the Nash equilibrium (NE), that is the central solution concept in game
theory.

Definition 1. The game is in the state of a NE if no player has anything to gain by
unilaterally changing its strategy. In other words, a strategy s ∈ S constitutes a Nash
equilibrium if for all players u and for each alternate strategy s′u ∈ Su:

Iu(su, s−u) ≥ Iu(s
′
u, s−u), (1.1)

where su denotes the strategy played by player u and s−u denotes the strategies played
by all other players.

A Nash equilibrium is unique, if that is the only Nash equilibrium in a game (e.g.
Prisoner’s Dilemma). Not all games possess a unique Nash equilibrium and there are
many existing games having multiple Nash equlibria [77]. It is important to mention
that the NE is not necessarily optimal for players. In games with multiple equilibria,
different equilibria can have (widely) different payoffs for the players. In order to be
able to evaluate the different equilibria and to get a more precise picture about a game
two distinguished metrics are defined, which are the price of anarchy (PoA) and the
price of stability (PoS). The PoA is the most popular measure of the inefficiency of
equilibria, resolves the issue of multiple equilibria by adopting a worst-case approach.
In order to be able to define the PoA precisely, first we need to define what the
optimal outcome of a game is, that is called social optimum (SO).

Definition 2. The SO refers to an equilibrium state that maximizes the social wel-
fare (i.e. minimizes the sum of all cost) even if its emergence requires a central
coordination force (i.e. the independent decision-making is taken away from players).
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Formally, a strategy vector s ∈ S constitutes a SO if:

∑
u

Iu(su, s−u) ≥
∑
u

Iu(s
′
u, s−u). (1.2)

Definition 3. The PoA quantifies the loss to selfishness by comparing the perfor-
mance at the Nash equilibrium to the optimal state of a game. In other words, PoA
shows the cost that players may pay for the lack of coordination in a worst-case sce-
nario. It is calculated as the ratio between the worst Nash equilibrium and the optimal
outcome (SO). Formally:

PoA =
mins∈ε

∑
u Iu(su, s−u)

maxs∈S
∑

u Iu(s
′
u, s−u)

, (1.3)

where ε is the set of Nash equlibria.

In the case of the Prisoner’s Dilemma discussed with cost matrix shown on Fig. 1.2
with the cost function C(s1, s2) = u1(s1, s2) + u2(s1, s2) the PoA is 16

2
= 8.

Definition 4. The PoS is an optimistic form of the PoA as it shows how far the best-
case scenario of the game, that is created by selfish players, lies from the optimum.
Formally, the PoS of a game is the ratio between the best Nash equilibrium and the
optimal outcome (SO):

PoS =
maxs∈ε

∑
u Iu(su, s−u)

maxs∈S
∑

u Iu(s
′
u, s−u)

, (1.4)

where ε is the set of equlibria.

In the case of the Prisoner’s Dilemma the PoS is equal to PoA, since the game
has a unique Nash equilibrium.

It is worth noting that a bound on PoS, which ensures that some of the equilibria
are close to the optimum, is much weaker than a bound on the PoA, which ensures
that every equilibrium is better than or equal to the given result. But despite this,
PoS is often worth to be found as (i) in some cases a nontrivial bound is possible
only for PoS and (ii) PoS often could serve as a decent solution to envision a concrete
design in practice by a central authority based on the game theoretical analysis. If
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both PoA and PoS close to 1 it indicates that the game is insusceptible to selfish
behavior.

1.1.3 Hyperbolic Geometry

Hyperbolic geometry is one type of non-Euclidean geometry, it accepts the first four
postulates (axioms) of Euclidean geometry but negates the fifth postulate, which is
equivalent to "the parallel postulate“:
(1) A straight line may be drawn from any point to any other point.
(2) A finite straight line may be extended continuously in a straight line.
(3) A circle may be drawn with any center and any radius.
(4) All right angles are equal.
(5) The parallel postulate: given any straight line and a point not on it there exists
exactly one straight line passing through the point that does not intersect the first line.

Features of the hyperbolic geometry

Even though hyperbolic geometry differs from the Euclidean geometry only in one
axiomatic rule, we can list several consequences to which this difference leads:

Intersecting lines: Two intersecting lines have the same properties as in Euclidean
geometry. Two lines can intersect in no more than one point, intersecting lines have
equal opposite angles and adjacent angles of intersecting lines are supplementary
angles. But by adding a third line then the properties of intersecting lines are differ
from intersecting lines in Euclidean geometry, e.g. given 2 intersecting lines there are
lines that do not intersect either of the given lines.

Non-intersecting lines (parallel lines): Non-intersecting lines in hyperbolic geometry
also have properties that differ from non-intersecting lines in Euclidean geometry. For
any given line R and point P which does not lie on R there are an infinite number of
coplanar lines through P that do not intersect R.

Circles and disks: The circumference of a circle of radius r is greater than 2πr. Let
R = 1√

−K , where K is the (negative) Gaussian curvature of the plane. Then the
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circumference of the circle of radius r is equal to 2πR sinh r
R

and the area of the
enclosed disk is 4πR2 sinh2 r

2R
= 2πR2(cosh r

R
− 1).

Hypercycles and horocycles: In hyperbolic geometry, there is no line that remains
equidistant from another. Instead, the points that have all the same orthogonal
distance from a given line are on a curve called a hypercycle. Horocycle is a curve
whose normal or perpendicular (the relationship between two lines which meet at a
right angle (90◦)) geodesics all converge asymptotically in the same direction.

Triangles: Unlike Euclidean triangles in hyperbolic geometry the sum of the angles
of a hyperbolic triangle is always strictly less then 180◦.

Distances: In hyperbolic geometry distance calculation also differs from the Euclidean
case.

Such a geometry is very different from the familiar Euclidean geometry, which
cannot be embedded isometrically into the Euclidean space, so different models were
created for hyperbolic geometry, the common ones are the Klein model, the Poincaré
disk model, the Poincaré half-plane model and the Lorentz or hyperboloid model [86].
In the dissertation the Poincaré disk and hyperboloid models are used.

The Poincaré-disk model is an intuitive representation of the hyperbolic geometry,
each of the characteristic shapes (circle, straight line, hypercycle, horocycle) appear
as an arc in the model. By using Descartes coordinates things like intersection points
and mirrorings can be relatively easily calculated. Furthermore, the tessellations look
appealing. In contrast, in the hyperboloid model calculations are easier by using polar
coordinates, especially integration, area and distance calculation.

1.2 Routing Policies

1.2.1 Border Gateway Protocol

As the Internet has become increasingly larger over the decades the Exterior Gate-
way Protocol [85], which was the original routing protocol of the Internet, has become
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obsolete. EGP was a simple reachability protocol, that was limited only to hierarchi-
cal, tree-like topologies. Beyond scalability problems (distance vector protocols suffer
from count-to-infinity and link state protocols must flood information) the support
of business policies was an urging issue as well. In order to solve these issues a new
exterior gateway protocol, the BGP, was designed and standardized in 1989, which
can be classified as a path vector protocol. The current version of BGP is version 4
(BGP-4) codified in 2006 [50].

BGP is responsible for exchanging routing and reachability information among
the autonomous systems (AS) of the Internet. According to the classic definition of
an AS it is a set of routers under a single technical administration, using an interior
gateway protocol and common metrics to route packets within the AS, and using
an exterior gateway protocol to route packets to other ASs [52]. Consequently, the
administration of an AS appears to other ASs as a single coherent interior routing
plan and presents a consistent picture about other ASs that are reachable through it.
So from the viewpoint of exterior routing an AS is monolithic, namely reachability to
networks directly connected to the AS must be equivalent from all border gateways
of the AS.

1.2.1.1 External and Internal BGP

ASs exchange reachability information that is based on a set of policies established
within an AS, through BGP gateways. The devices that communicate with each
other via BGP are known as BGP neighbors. These neighbors can be located either
in the same AS or in different ASs. Based on this we can differentiate between two
types of BGP communication sessions: (i) external BGP (EBGP) and (ii) internal
BGP (IBGP), which is illustrated on Fig. 1.3. BGP uses the same message types on
EBGP and IBGP sessions but the rules for when to send and how to interpret each
message is slightly differs. For this reason people usually refer to IBGP and EBGP
as two separate protocols.

EBGP is used and implemented at the edge or border router of an AS and during
an EBGP communication session the BGP neighbors belong to different ASs but
share a common network infrastructure that is used to carry the BGP messages
between them. EBGP works in collaboration with the IBGP to transfer the routing
information. Usually, if an AS has multiple connections to other ASs then multiple
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Figure 1.3: BGP communication is carried out either with IBGP or EBGP protocol. If
the communicating BGP capable devices are in the same AS (intra-domain scenario),
then IBGP protocol is used, otherwise (inter-domain scenario) EBGP.

BGP gateways are needed. In this case all the BGP gateways representing the same
AS must give a consistent image of the AS to the outside. This can only be done by
assuring that border routers always have consistent routing information and for this
purpose internal BGP peering is set up between all of the BGP gateways. During the
IBGP session all of the EBGP routes are redistributed among BGP gateways by an
interior gateway protocol, such as OSPF [53] or IS-IS [51].

1.2.1.2 AS Relationships and Types of Traffic

A significant volume of traffic is carried within an AS that either originates or ter-
minates at the AS; this kind of traffic can be categorized as local traffic. All the
other kinds are considered transit traffic, which is controlled by BGP. In the Inter-
net, however, the flows of the traffic are not determined only by technical conditions
(bandwidth, delay, existence of a connection, etc.) at the first place but are further
restricted by business relationships existing between ASs described by service level
agreements (SLAs). In the AS ecosystem these business relationships can be quite
diverse, still we can classify most AS-AS links into basically two major groups [48]:
in a customer-provider relationship the customer AS pays the provider for forwarding
its traffic, while in a peering relationship neighboring ASs voluntarily exchange traffic
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Figure 1.4: Fundamental AS types based on traffic flows. At the bottom of the
hierarchy are the stub ASs that do not have any customers, only provider(s). Upper
in the hierarchy there are the lower-tier ASs, which have both customer and provider
ASs, while Tier 1 ASs have only customers. However, peering is possible between any
AS pairs, even if they are not classified to the same tier group.

with each other in a settlement-free manner.
Based on how an AS deals with transit traffic each AS can be placed into one of

the following three categories (Fig. 1.4):

• Multihomed AS: an AS that has more than one connection to other ASs, but
refuses to carry transit traffic. From the business perspective these ASs are
at the top of the hierarchy, the upper-tier ASs, and often referred as Tier 1
networks. By definition a Tier 1 AS is a network that can reach every other
network on the Internet without purchasing IP transit or paying settlements
and a Tier 1 AS peers with every other Tier 1 ASs.

• Transit AS: an AS that has more than one connection to other ASs and is
designed to carry both transit and local traffic. This practically means, that
such an AS has its own customer(s), but it is also purchases IP transit (i.e. has
provider AS) to reach some portion of the Internet. These ASs are referred as
lower-tier networks.

• Stub AS: an AS that solely purchases transit from other ASs to reach the
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Internet. Such an AS carries only local traffic.

1.2.1.3 Policy enforcement

BGP enables to enforce policies based on various constraints and preferences which
are tipically non-technical related considerations. These can be decided by the AS
operators and can be set as configuration information. According to the settings
the BGP gateways affect the process of best path selection, in the case of multiple
alternatives, and take care of redistributing the preferred routing information.

The non-technical constraints are related to political, economic or security con-
siderations that are usually independent from performance-related preferences. For
example a multihomed AS is able to decide to avoid the forwarding of transit traf-
fic and can enforce this policy in the form of BGP configuration. Another typical
example is when an AS favors or disfavors to carry transit traffic via a certain AS.

The performance-related considerations can be controlled by BGP are (i) minimiz-
ing the number of transit ASs (i.e. shorter AS paths preferred over longer ones), (ii)

preferring internal routes over external ones and (iii) choosing higher quality ASs for
carrying transit traffic. The quality of an AS can be measured by things like diameter,
link speed, capacity, tendency to become congested and quality of operation.

1.2.1.4 The Best Path Selection Algorithm

In the case of multiple valid paths exist BGP use the Best Path Selection Algorithm in
order to decide the next hop. The algorithm consists of 13 rules in consecutive order
and each rule introduces a new filter condition for valid paths. First the algorithm
selects valid paths by rule 1, then, if more than one valid path exists, it continues by
adding rule 2 and so on until only one valid path left. As the algorithm goes through
the rules every step enables a subtler distinction. Among the rules there are Cisco
specific rule (e.g. the WEIGHT attribute) and also several lower rules related to the
command type used for advertising the path, to timestamps or to router IDs and
addresses. Table 1.1 shows a simplified version with the most significant rules of the
route selection process [24][40]. The valley-free criteria is distinguished as rule No. 0,
since BGP path selection works over valley-free paths.

In the following I will concentrate only for the first two steps, i.e. the valley-free
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Table 1.1: The simplified BGP Best Path Selection Algorithm.

# Rule
0. Valley-free route
1. Highest local preference
2. Shortest AS path
3. Lowest origin type
4. Lowest MED
5. EBGP-learned over IBGP-learned
6. lowest IGP metric to the BGP next-hop

and local preference policies, as in the dissertation I investigate the effects of BGP
based on these rules. The reason behind this is threefold: these rules are (i) strictly
economically motivated (unlike the other rules), (ii) the most general ones affecting
the communication [38] and (iii) enable to capture non-trivial aspects of inter-domain
routing in a clean form that is analytically tractable at the same time.

Valley-Free Routing Policy

The business relationships of different ASs can be diverse, based on exclusive con-
tracts, service-level agreements and other policy issues. Still we can categorize most
AS-AS links into basically two major groups [48] which are the customer-provider
and the peering relationship. In the former the customer AS pays another for for-
warding its traffic, while in the latter neighboring ASs voluntarily exchange traffic
with each other in a settlement-free manner.1 The valley-free policy manifests the
simple economic principle that the flow of traffic must coincide with the flow of cash.

To put it shortly the policy dictates that AS A can use a link to a neighboring AS
B to forward the traffic if and only if either the incoming traffic is from a customer or
B is a customer of A. In other words, valley-free compliant paths comprise arbitrary
(may be zero) number of customer-provider links, zero or one peer link and again
arbitrary provider-customer links strictly in this order (Fig. 1.5). The valley-free
policy is a typical example on how important an economic, i.e. a non-technical,
policy constraint could be.

1Sibling and backup relationships are omitted for simplicity.



16 1.2. ROUTING POLICIES

(a) (b)

Figure 1.5: Illustration of path types that satisfy (a) and violate (b) the VF policy.
A valid path contains n customer-provider, at most 1 peer and m provider-customer
link strictly in this order, where n,m ∈ N. All the other types are invalid paths.

Highest Local Preference Policy

The second rule of the Best Path Selection Algorithm is the other very important
economic-based policy, which is the highest local preference policy. It is applied on
top of valley-free routes meaning that an AS can pick one from the available valley-
free routes according to its local interest. Meanwhile these local interests can exhibit
high variety the minimalistic rule, that customer and peer paths are favored over
provider paths, is contained in basically every local preference setting within the
ASs [38] (Fig. 1.6). This is in line with the nature of these routes as customer and
peer paths are completely free unlike provider paths in which the provider has to be
compensated in some way for the carried transit traffic.

1.2.2 Greedy Navigation

Greedy or geographic routing is a very simple heuristic in which routing decisions (i.e.
choosing next hops) are based only on local information. In a networking context local
information is generally understood as the coordinates of the nodes but actually it
can be any consistently assigned attribute value from a metric space (mathematically
metric space is a set for which distances between all members of the set are defined).
In such a network whenever a node wants to communicate with another one, the only
information that has to be considered is the attribute value of the destination and the
neighboring nodes of the source. The next hop is always the neighbor that, based on
the metric space, brings closest to the destination (Fig. 1.7).

The attractiveness of this heuristic lies in its simplicity as it does not require global
information yet is able to provide short paths during the communication, especially on
scale-free topologies (described in 1.1.1), which are known as the common signature
of many large-scale self-evolving complex networks.
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Figure 1.6: Illustration of paths prioritization according to the highest local preference
rule. If AS C wants to reach AS G it has multiple options, since C–B–A–D–G, C–
D–G and C–E–F–G are equally valid valley-free paths. However, economically, the
favorable order is C–E–F–G (as E is a customer of C), C–D–G (as D is a peer partner
of C) and C–B–A–D–G (as B is a provider of C). Note that, in this step of the Best
Path Selection Algorithm the first hop is more important than the length of the paths,
namely it is generally worth to choose a longer but cheaper path than a shorter but
more expensive one.

This phenomenon was first confirmed by the noted social psychologist Stanley
Milgram in 1967 by an experiment [75] carried out in the USA. He asked participants
to deliver letters via their personal acquaintances. For example one in Nebraska had
to reach someone in Massachusetts. The only additional information - beyond the
address - was the profession of the addressee. It turned out that the average path
length of successful forwarding chains were between five and six and in these cases
the general approach was to choose someone (as a next hop) based on (i) who brings
closer to the destination and (ii) whose profession is similar (i.e. seems “related”) to
the addressee. So Milgram’s famous experiment was the first that showed empirical
evidence that complex networks are small worlds and indeed navigable by distributed
greedy routing at the same time [92]. However, this efficiency is not trivial, since
being only a heuristic, greedy routing theoretically can stuck during forwarding, as it
is described at (Fig. 1.7).

Kleinberg proposed an analytic model and a working algorithm that justifies the
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Figure 1.7: Illustration of greedy navigation. Consider this graph comprising 5 nodes
and a distance calculation method based on geographical coordinates. If A wants to
reach D, then first calculates distances between B – D and C – D, then choose C
as next hop, since C brings closer to D than B. C does the same way and from A –
D and E – D choosing E (trivially). Finally, E considers B – D, C – D and D – E,
then forwards to D. In the case of this specific graph if D – E would not exist greedy
routing ended up with E and get stuck there, since there is not neighbor closer to D
than E itself.

existence of such a small-world message forwarding [58] experienced by Milgram.
In this work the world is modeled as a two-dimensional grid (Fig. 1.8), where each
vertex is a person and there are local and long-distance edges between vertices. The
probability of the existence of a long distance edge is Pr(u, v) = d−r(u, v), where d
is the lattice distance and parameter r ∈ [0,∞). It is shown that a simple greedy
routing algorithm needs O(log2n) time to travel between any pair of nodes if and only
if r = 2 or more generally r = D, where D denotes the dimension of the lattice.

Since metric spaces are either existent [94] or can be efficiently constructed with
regard to social and computer networks [15, 60], greedy routing is a remarkably ef-
ficient mechanism. A number of practical routing solutions are based on the greedy
routing principle. Perhaps the most successful practical systems using greedy for-
warding are the overlay networking solutions based on distributed hash tables, e.g.
CAN [83] and Chord [32]. These schemes employ different underlying abstract ge-
ometries as a basis for forwarding, torus and circle, respectively. Hamming-distance
based greedy routing has been utilized in Microsoft’s BCube data center design [45].
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(a) r << 2 (b) r ∼ 2 (c) r >> 2

Figure 1.8: The effect of parameter r to the topology. Sub-figure a), b) and c) shows
how likely longer connections emerge for different values of r. In the case of r ∼ 2
most of the connections will lead to nodes relatively close to u, but there are some long
connections as well, making possible of bypassing large distances, thereby enabling
shortest paths, i.e. small-world property in the network.

1.3 Approaches for Investigating the Topology of the

Internet

Knowing more about the topology of the Internet is one of the most popular topics
of the network science community. The reason behind the popularity is that (i) com-
pared to other complex networks this topology is highly tractable and both active
and passive measurements can be executed on this network, thus “screenshots” can
be created easily and (ii) this topology - at least from a macroscopical view - is very
similar to other complex networks like the neural and social network, the network of
airline routes or the food web. [10, 93]. By similarity we mean three fundamental fea-
tures in which complex networks are common, these are the small world property, the
power-law degree distribution and the high clustering coefficient (described in 1.1.1).
Thus knowing more about the topology of the Internet is valuable for researchers
from diverse or multidisciplinary areas as well.

Basically, two types of Internet topologies are used during the investigations, one
is the router level and the other is the AS level topology. However, in most of the
works on "Internet topology" actually refers to the AS level topology, since it has a
more manageable size with its ∼50 000 ASs and from a global view the data obtained
is more precise and persistent at this level.
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1.3.1 Motivation and Benefits

The last decades have supplied us with thousands of stories where topology-related
information about the Internet was directly transformed into more efficient architec-
tures and services or more appropriate business decisions. In the following I give an
overview about the most significant investigations inspired or connected to the AS
level topology.

Content Delivery Networks

The most specific example is Content Delivery Networks (CDNs) that deliver a high
volume of commercial content. In 2011 almost 50% of peak-time traffic coming into
North American access networks consisted of real-time entertainment, provided by
content providers such as Netflix and YouTube via their CDN operators: Akamai,
Limelight, Level 3 and Google [79]. This trend holds outside North America as well
and CDNs has an increasingly important role and impact on the network traffic.

In order to enable efficient content delivery beyond origin servers CDNs use nu-
merous surrogate servers to support serving the requests. Large providers such as
Akamai have more than 200 000 servers in over 100+ countries around the world [91].
The proper placement of these servers is crucial for performance and there are several
approaches including Hot Spot [64], Tree-based [80], greedy method based [63] or
topology informed [55, 81] replica placement strategies.

Topology informed strategies use existing topological information about the Inter-
net and the actual CDN network for efficient mapping. Basically there are two types:
(i) Servers are placed at highly connected hosts in the AS Level topology graph of the
Internet according to degrees in descending order. This is based on the assumption
that hubs can reach others more easily thereby decreasing the overall latency. (ii)

The Internet router-level topology can also be used for mapping servers to places. In
this case each LAN associated with a router is a potential site where servers can be
placed [79].

Cloud Networks

Similarly to CDNs cloud providers have a constantly increasing number of customers.
Large providers such as Microsoft Azure offer 200+ cloud services that are hosted on
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more than 100 globally distributed data centers, edge computing nodes and service
operation centers [28]. Providing performance that satisfies customer needs could be
very costly (tens of millions of dollars) in such networks, which are made up of four
main components: (i) servers (CPU, memory, storage systems), (ii) infrastructure
(power distribution and cooling), (iii) power draw (electrical utility) costs and (iv)

network (links, transit, equipment) [42].
Geo-diversity of the cloud network influences all these factors as it can lead to

lower latency and better reliability. The impact of latency is shown by Google and
Amazon through experiments. Google reported that a 500 msecs increase of dis-
playing search results caused 20% revenue loss and Amazon reported about 1% sales
decrease due to 100 msecs additional delay. However, geo-diversity also increases the
cost of service. So there is a trade-off between the performance and the placing and
sizing of data centers (i.e. to design the appropriate network topology), that is a
challenging optimization problem closely connected to the emerging topology of the
Internet.

Peer-to-Peer Networks

Peer-to-Peer (P2P) overlay networks are another example on how useful the topolog-
ical knowledge could be. As communication environments became increasingly com-
plex finding new ways to manage distributed systems without central organization
and hierarchical control attracted growing interest. The idea of P2P overlay networks
is to create a virtual mapping that overlays the physical networks and help locating
data as quickly as possible with minimal overhead and maintenance in order to en-
able efficient, massively scalable, robust and fault-tolerant routing in a self-organized
fashion. These features make P2P overlay networks important in data sharing and
content distribution applications. Over the years several solutions have been created.
Based on how they create the overlay network, they can be categorized into two main
groups: (i) structured and (ii) unstructured P2P overlays [66].

The fundamental difference between these categories is the way they find the
content stored by overlay peers. In the first group the network assigns keys to data
items and organizes its peers into a structured graph that enables efficient discovery
of these items using the given keys. Popular structured P2P overlay networks are
CAN [82], Tapestry [100], Chord [90], Pastry [87], Kademlia [71] and Viceroy [69]. In
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the second group peers are organized in a random graph and looking up the data item
is carried out by flooding, random walks or by expanding-ring Time-To-Live search.
Popular networks that belong here include Freenet [27] and Gnutella [41].

Both types of networks have strengths and weaknesses - for example unstructured
solutions are less complex, but for a rare data item many peers would have to be
involved in the lookup process - hence choosing the best method depends on the
application and on its required functionality. However, as data lookup process is
based on the virtual mapping of the physical topology it is very unlikely in both types
of overlays that the proper peers - which own the searched data item - are reached via
an optimal number of intermediate nodes (neighboring peers in the overlay network
are not necessarily connected physically).

This matching can be improved by creating topology-aware P2P overlays that aim
to exploit network proximity in the underlying Internet. In [22] an improved version
of Pastry is presented with a comparison to CAN, Chord and Tapestry. Results
supporting the claim that topology-aware routing approaches in P2P overlays can
improve application performance and reduce network usage substantially at the same
time while incurring only modest additional organization and maintenance overhead.

Epidemic Models

Scale-free networks have aroused interest from the aspect of epidemic spreading as
well. In addition to biological networks Internet is again a popular target for re-
searchers due to its technological and economical relevance. The general approach is
to use a scale-free topology with a standard epidemic model (e.g. SIS or SIR [6]) in
which nodes can be in the state of susceptible, infected and recovered and infection can
spread through direct connections (links). Important metrics are the average lifetime
of the virus spreading and the epidemic threshold (a value which shows whether the
infection spreads and become persistent or dies out).

In [78] it is shown that (i) the average lifetime of viruses is larger if the Inter-
net expands and that (ii) scale-free networks surprisingly do not have an epidemic
threshold. The reason for that is the existence of the hubs and their extremely high
connectivity, since the threshold value is inversely proportional on the node’s degree,
that annuls the threshold.
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Navigation of Complex Networks

One of the most fascinating discoveries about natural complex networks is the fact
that navigation is efficient, even though nodes communicate with greedy navigation,
which relies only on local information without the presence of any global intelligence.
This phenomenon is closely connected to the structural properties of these networks.
The similarity of the Internet topology to natural complex networks has raised the
question “Is it possible to use greedy navigation on the Internet as well?”, thereby
solving the long-standing scalability problems come from the currently used BGP
based routing architecture, that relies on constantly maintaining a coherent view of
the global topology. [14]

However, the first step towards this direction should be the clarification on “How
does the topology exactly affect (make possible) the efficiency of greedy navigation?”.
Authors of [14] investigate the question and explain this connection by introducing
a general mechanism relies on the presence of a metric space hidden behind the
observable network. As described at greedy navigation (Section 1.2.2) this metric
space could be anything that enables to calculate distances between two arbitrarily
chosen nodes of the network. In Milgram’s experiment the attribute value of the
metric space was the profession of the participants. For example if one needs to send
message to a politician via personal acquaintances it is more likely to contact a lawyer
or his high school history teacher than a car mechanic as next hop.

Such underlying - yet undiscovered - metric spaces can be found in many complex
networks helping the decisions of nodes during the forwarding process and the amount
of their usefulness depends strongly on topological properties. In order to justify this
the authors of [14] provide a scale-free network model that is similar to the Internet
AS topology and by simulations they show evidence that structural properties like
clustering coefficient and degree-distribution directly affects the average length of
forwarding paths in the network.

Hyperbolic Mapping of the Internet

Recently it was shown that not only natural complex networks but geographically
embedded Internet-like synthetic networks also enable efficient communication with
greedy navigation [14, 16, 61]. The reason for the efficiency is again due to the
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metric space. Embedding here actually means to create a synthetic metric space that
strongly supports decision making on finding the best next hop during forwarding.
The general idea behind this embedding is the fact that routing on the Internet
nowadays is somewhat equivalent to forwarding based on a hypothetical road atlas
that does not contain the real geographic information, but only lists road network
links, which are pairs of connected road intersections, abstractly identified.

Authors in [15] suggest that the routing task could be drastically simplified in
this environment by using the real geographic coordinates, since if the coordinates
of the starting and destination points are given then it is easy to tell what direction
would bring closer to the destination. Furthermore, since geographic coordinates are
invariable this information does not need to be exchanged in case of topology changes,
which can lead to efficient routing with minimal overhead based on local information.
However, constructing the proper map congruent with the network topology is crucial
for this kind of routing architecture along with the chosen coordinate system. The
authors have shown in recent works [14, 16, 61] that the efficiency of forwarding can
be maximized by using hyperbolic space, hence they create the map of the real AS
level Internet in a hyperbolic space based on statistical inference techniques and show
that embedding this map indeed enables the expected forwarding efficiency.

Robustness and Traffic Handling

The structural consequences of the Internet AS topology is also investigated and
showed [84] that there is a trade-off between the resilience to structural damage and
the efficient handling of traffic flows. As a method authors created an AS topology
model, based on the data supplied by projects DIMES [88] and ROUTEVIEWS [1],
on which they carry out vulnerability tests and traffic dynamics analysis. They also
compare their model with a classical random network of similar size.

They summarize the results as follows: whereas the Internet AS topology ensures
robustness at a structural level (i.e. random node failures cannot cause significant
structural damage) it does not allow to reach the same efficiency for handling traffic
flows. In fact, an Internet-like network reaches the congested phase prior to a random
network. This comes from the scale-free nature of the network, as large hubs on the
one hand ensure excellent connectivity through their connections, however, on the
other hand they attract much more traffic than other parts of the network, since
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most of the short paths lead through them, which can easily lead to congestion.

This effect can be mitigated by scaling out with stronger central routers, but
fundamentally it cannot be resolved in this way. That is why authors also discuss
strategies the are used to avoid this central-links bottleneck problem by using alter-
native paths in congested situations based on the topological knowledge.

1.3.2 Approaches

The aforementioned cases represent some examples where topological knowledge is
greatly exploited, but this knowledge is partial and researchers still put a lot of effort
into further extending it. In the following I give an overview about the different
approaches, including projects and models as well, that aim to gather precise and
accurate topological information about the Internet. Besides categorizing and shortly
introducing them I also place and describe my approach.

1.3.2.1 Measurements

Today we have historical and contemporary measurement data collected continuously
and made publicly available according to various approaches, which include (i) In-
ternet mapping (Rocketfuel ISP Mapping [89], Skitter [72] and Opte Project [67]),
(ii) discovery of economic relationships (CAIDA’s Archipelago project [19], IXP
anatomy [3]) and (iii) visualizing the infrastructure of multiple backbone providers
simultaneously (MapNet [25]).

These projects mainly rely on the data provided by the University of Oregon
Route Views Project [74], looking glass servers of TRACEROUTE.ORG [57] and the
Archipelago project. Rout Views originally conceived as a tool for Internet operators
to obtain real-time information about the global routing system from the perspec-
tives of several different backbones and locations around the Internet. It uses publicly
available BGP tables consists of AS path to destination traceroutes and collects data
since 2000. TRACEROUTE.ORG is a collection of looking glass servers that enables
running queries on participating ASs, although it provides only a constrained view of
the routing system. Archipelago is CAIDA’s active globally distributed measurement
infrastructure set off in 2007. In order to improve the view about the global Internet
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CAIDA is continuously distributing hardware measurement nodes (2nd gen. Rasp-
berry Pi) with as much geographical and topological diversity as possible. Archipelago
project is tailored specifically for active network measurement and it is also included
in several measurements that are not directly connected to the topology (e.g. The
Spoofer Project [12], TCP Behavior Inference [19], IPv4 and IPv6 Stability [19],
TCP-HICCUPS [29]).

Meanwhile the data stemming from these measurements is the exclusive source of
direct information about the AS topology and thus can be treated as the ground truth
we can keep ourselves to, the way these measurement systems work is continuously
reported to be imperfect and far from optimal [3]. Additionally the collected data
reveals only the current state of the network and cannot give usable predictions and
clear characterization of the topology forming processes lying in the background.

1.3.2.2 Internet Models

The other popular approach of getting more knowledge about the Internet topology is
the creation of different network models. Nowadays it’s commonly accepted [3] that
the Internet belongs to the group of scale-free networks, so the relevant models here
are those that can produce such topologies. However, there is an interesting historical
background that is worth of summarizing shortly the evolutionary milestones:

1. Random graphs: the most commonly used models for generating networks
algorithmically were the Erdős-Rényi [18] and the Waxman [96] models from
1985 and 1988, respectively. In the Erdős-Rényi model the network is a random
graph G(n, p) with n nodes where each possible p edge has a probability p

of existing. The number of edges in a G(n, p) is a random variable with the
expected value

(
n
2

)
p.

The Waxman model is similar, but here nodes are randomly distributed in a
two dimensional grid. Links are added to the graph by considering all possible
pairs of nodes and then deciding whether a link should exist according to a
probability function involving the distance between nodes and the number of
links expected in the network.

These models are simple but has serious drawbacks when they are used for
generating Internet-like topologies [20]: (i) the network aren’t resemble to real
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Figure 1.9: Transformation from regular lattice into a small world and random graph.

networks as they lack any sense of backbone or hierarchy, (ii) there is no guar-
antee for a connected network, (iii) the number of links is proportional to the
number of nodes and (iv) although the average path length is small, the cluster-
ing coefficient is low and has a Poisson degree distribution instead of power-law.

2. Watts and Strogatz graphs [95]: W. and S. considered that real networks are
neither entirely regular nor entirely random, so they combined the two extremes,
namely the regular lattice and the Erdős-Rényi model. The initial state is a
regular lattice, such as a ring, and then some of the edges are rewired in order to
introduce a measure of randomness. Each edge is examined and redirected to a
random destination by probability p or left in place by probability 1− p, where
p ∈ [0, 1]. If p = 0 the lattice remains unchanged and if p = 1 it is transformed
to a random graph. The interesting cases lie between these values. Besides
addressing most of the issues of pure random models this model can generate
graphs with high clustering coefficient, thereby creating “small worlds”, which
is a significant step towards realistic networks. However, the realistic degree
distribution is still missing from the generated networks.

3. Scale-free graphs: one of the most influential discoveries of the last decades
in network science is the identification of scale-free networks, i.e. that the
node connectivities in a complex network follows a scale-free power-law distri-
bution [9]. The first clue is connected to the map of the World Wide Web
(WWW) finding that the probability of a Web Page has exactly k connections
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(i.e. degree k) is P (k) = k−γ, which is very far from the previously assumed
Poisson distribution [11]. This is a consequence of two generic mechanisms that
is the networks expand continuously by the addition of new nodes and that the
new nodes attach preferentially to already well connected nodes.

The first scale-free model is the Barabási-Albert (BA) model that mimics these
behaviors and grows a network from an initial connected network of m0 nodes.
Each time when a new node is added it connects to the existing nodes with
a probability proportional to the degree of the nodes already in the network.
Formally, the probability that an edge is connected to node i is p = ki∑

j kj
. The

number of edges a new node connects with can be adjusted by a parameter.
This discovery inspired a plethora of new Internet AS-level models over the last
decades that can be categorized into three fundamental types that are causality
oblivious, causality aware and game theoretic models.

Causality Oblivious Models

These models use various mathematical approaches to generate network topologies
but without any regard about the incentives and individual decision making of nodes
that leads the network to its final state. The topology generation process is carried
out based on such premises that ignore realistic decision making considerations and
if the result is promising enough the used methods are finally generalized. We can
say this is the de facto way of getting information about complex networks. Popular
models that belong here are PLRG [4], Inet [97] and the dK-graphs [68].

PLRG produces random graphs with a power-law degree distribution depending
on the number of nodes N and an exponent β. It assigns a degree to every node
according to the power-law distribution. For creating links between nodes PLRG
makes ki copies of each node, where ki is the degree picked for node i based on
the power-law distribution, then connects copies by randomly picking pairs until no
isolated copies remain.

Inet generates topologies in multiple steps: First, it assigns a degree to every
node that should be in the graph then grows a spanning tree from nodes that have a
degree greater than 1 by connecting each of them according to preferential attachment
described at the BA model. Next, it connects all nodes with degree 1 to the graph
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again using preferential attachment. Finally, it connects the remaining free degrees in
G, starting from the node with largest degree first. When making these connections
nodes are randomly picked according to preferential attachment. Inet has multiple
versions and each contains some improvements based on previous versions.

The dK-graphs are also based on given degree distributions (dK-distributions)
that specify node degree correlations within subgraphs of size d. The dK-graphs
are the sets of graphs constrained by given values of dK-distributions. Through an
incremental generation process a family of dK-graphs, where d < 4 can be produced.
Each family describe random graphs in a successively finer detail according to the
fundamental metrics in the literature. However, the larger the value of d the higher
the computation complexity is. According to the authors d = 2 is sufficient for
most practical purposes, while d = 3 reconstructs the AS- and router-level topologies
precisely.

While the causality oblivious models are simple and often precise (as far as the
power of measurement data can verify) this approach suffers basically from the in-
ability to capture correlations between node behavior and topology changes and to
anticipate evolutionary trends.

Causality Aware Models

Causality aware models try to mimic some concrete behavior of the network formation
process, thereby creating relevant topologies. The aforementioned BA model and
the Heuristically Optimized Trade-off (HOT) [34] models are the very first topology
generators that belong to the causality-aware group. HOT also uses incremental
network growing with preferential attachment for producing networks with power-
laws, but HOT builds a tree from arriving nodes and the selection process takes into
account of minimizing the Euclidean distance between the two connected nodes and
to possibly find a centrally located one as well.

BRITE [73] incorporates the findings of power-laws, the skewed node placement
and the locality network connection during the topology generation process that can
be fine tuned by parameters offering multiple choices. Nodes are first placed in a
HS ×HS plane according to either a uniform random or a pareto distribution, then
each square is divided further and the assigned nodes are uniformly distributed among
them. In the next step a backbone spanning tree is created from the nodes selected
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one-by-one for each HS square. The remaining nodes are then connected to the
backbone with preferential attachment based on locality and/or outdegree.

SIMROT [31] generates hierarchical topologies that include business relationships.
For each network it distinguishes four node types: T (tier-1), M (transit), CP (con-
tent provider) and C (customer). After calculating the necessary amount of each type
of node (and some other constraints) it assigns regions to them and start incremen-
tal growing with preferential attachment in a top-down manner, always taking into
account that both end-nodes of an edge must be in the same region. This first phase
creates only customer-provider edges. In the second phase nodes create peer edges
for type M with preferential attachment and for type CP with uniform probability.

Causality aware models not only produce often precise topologies (similarly to
causality oblivious models), but also introduce an observable network formation pro-
cess that can provide even predictions for topological changes. However, this approach
is not applicable to prove that the processes these models are defined upon, are actually
present in the real AS network. For example one cannot really think that preferen-
tial attachment in its pure form (where an AS chooses its peers according to their
exact nodal degree) happens in the AS ecosystem. This inability makes these mod-
els and their predictions somewhat ambiguous. In other words, the knowledge we
can gain through measurements and causality-aware models does not really focus on
deeper understanding of the networks, as incentives of nodes are unnoticed and the
self-organizing nature of the network formation process remains unrevealed.

Game Theoretic Models

Game theoretic models concentrate on network-creation from the aspect of individu-
als. In these models all nodes considered as rational, selfish players whose intention
is forming a network along their own interest. The topology formation process can
be analyzed by a game defined with a triplet of players, strategies and payoffs. The
network creation process is considered as finished if the game reaches a Nash equi-
librium state, in which no nodes worth to change its actual strategy provided that
others do not change theirs.

These models introduce two important features, (i) by capturing the self-organizing
aspect of the AS-level Internet they give us the possibility to predict certain properties
and changes of the network and (ii) by assuming prudently defined premises such a



CHAPTER 1. INTRODUCTION 31

model enables us to analytically prove the exact topological consequences of certain
intentions of the players. Nevertheless, several models are not intended to be analyti-
cally tractable as they focus only on the first aspect, i.e. capturing network dynamics
as realistically as possible. Based on this we can further distinguish between com-
putational and analytical game-theoretic models. For both types one of the most
important design step is to define premises that should capture non-trivial aspects of
the system, but for analytical models it is also crucial to balance between complexity
and tractability.

Consequently, computational models are able to include more detailed information
about the nodes and to play a more realistic network formation game but at the cost
of greater complexity, which is usually reflected by the inability of generating large
networks (above hundreds of nodes). Analytical models, by contrast, concentrate
on capturing some certain behaviors in a simpler yet realistic setting that yields
non-trivial and analytically provable conclusions at the same time, even for larger
networks. It is also worth noting that the game theoretic approach is somewhat
complementary and not supplementary of the other Internet models as those try to
tackle the AS level network from completely different angles and can provide totally
different insights. By understanding the inherent self-organization of nodes/players
we have the ability to predict trends and changes in a complex network that makes
us capable to act proactively.

GENESIS [65] is a computational game-theoretic model that puts the focus on
capturing inter-domain traffic flows, geographic constraints and economics to model
the network formation process. This is carried out by the implementation of several
realistic rules referring to IXPs placement, traffic generation and consumption of play-
ers, cost structure of business relationships, etc.. Each simulation produces different
equilibria (or in about 10% of the runs it gets stuck in oscillations) and aims to an-
swer questions on “How does the changes of business relationships affect the resulting
network in terms of topology, traffic and economics?”. However, the high complexity
of the model enables to experiment only with smaller networks (circa a few hundred
nodes). The model of Chang et al. [23] is similar in spirit to GENESIS as it also
includes realistic economic, geographic and traffic constraints and aims to model the
decision process by which connectivity between ASs in the Internet is established.
However, among others, it differs in using hard-wired strategies for creating business
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relationships.
Analytical game theoretic models have a large body of literature with several

results collected in [77]. The range of these models include simple (in the term of
realistic design) network formation games. In the local connection games nodes face
two conflicting desires, namely, to pay as little as it possible, and to have short paths
to all other nodes. In global connection games players make global decisions, in that
they may build edges throughout the network. Unlike the local connection games, here
players actually build and maintain large-scale shared networks and are interested in
connecting to some specific nodes, called terminals, as cheaply as possible. In facility
location games there is a more sophisticated cost model as links (connections) still
have costs, but players also select prices for users (thereby creating providers and
customers) so as to maximize net income, which is the price minus the cost paid.

The above mentioned computational and analytical models provide valuable in-
formation about network dynamics and equilibrium states from multiple aspects, but
still the topological footprints inflicted by routing policies, which is one of the most de-
termining factors on the resulting network, is an unacquainted aspect. Computational
models comprise constraints referring to policy rules but - following from their nature
- along with so many other influencing factors that makes hard to give a general,
yet precise conclusion about the effect of these rules. On the other hand, existing
analytical models do not really consider routing policies either, or if they do so then
by using unrealistic or oversimplified rules (e.g. shortest path distance for describing
business driven forwarding paths between nodes).

In my work I aim to fill this gap by investigating the topology formation effects
of different routing policies connected to complex networks. To do this I design ana-
lytical models in which the policy rules exist in their pure and more realistic form,
carefully separated from other factors that could confuse the analytic inference. In
the following chapters I concentrate on the rules of BGP and greedy routing policies
and discuss their effects in respect of the emerging topologies. In the case of BGP I
prove the existence of a special subgraph that is always included to the network due
to the incentives of nodes drove by BGP. For greedy navigation I show that currently
popular topologies, that enable efficient greedy routing, cannot emerge - at least in an
economically verifiable way - under Kleinberg-like, constant dimensional, grid-based
models.



Chapter 2

Topological Consequences of the BGP

[J1, J2]

Since the AS level topology is formed along the rational business decisions of the
individual ASs, game theory is a natural modeling tool of choice. So in the follow-
ing I consider ASs as rational but selfish players whose incentive is to communicate
with each other using the valley-free (VF) and local preference (HLP) rules (Section
1.2.1.4) for routing policies.

Accordingly, players are defined as the nodes of the network, while the strategies
of the players are to create a set of links connecting them to an arbitrary subset of
the other players. The goal of the players is to minimize their cost function which
consists of two parts: link cost and communication cost. The cost function for player
u is generally defined as [35]:

Cu =
∑
∀u6=v

dsh
G(s)(u, v)︸ ︷︷ ︸

communication cost

+ α|su|︸ ︷︷ ︸
link cost

, u, v ∈ P , (2.1)

where dsh
G(s)(u, v) denotes the length of the shortest path between players u and v on

the graph G(s) characterized by the union of strategies of the players; su stands for
the strategy of player u (i.e. the links that u creates towards the other players), while
α represents the cost of building one edge. Thus such a game effectively analyzes
the trade-off between link costs and communication costs for rational, selfish players,
as the key incentives of building specific topologies. As defined in (2.1), distance is

33
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usually measured as the average length of shortest path from the given node to all the
other nodes. Throughout my analysis I always define such network formation games
adjusted to the specific policy that is investigated.

2.1 The Valley-Free Game

As described in Section 1.2.1.4 the VF rule is the most fundamental part of the
BGP policy routing, since any valid path between ASs has to be a VF path as well.
Accordingly my first goal is to define and analyze a game to understand how this rule
affects the topology.

Players and routing – Let P be the set of players (identified as network nodes)
with cardinality N . Recall that the rules of the VF policy dictate that a player u can
forward traffic originated from player w to a neighboring player v if and only if: (i) the
incoming traffic of u is from a customer (in this case the relationship between u and
v is indifferent and can be both provider-customer or peering), or (ii) v is customer
of u (in this case the type of relationship between w and u becomes indifferent). In
other words: after a provider-customer edge or a peer edge, the path cannot traverse
another customer-provider edge or another peer edge, respectively.[38]

Strategies and topology – A strategy for player u ∈ P is to create a set of
undirected edges to other players in the network. The created edges can be customer-
provider (p) and peer (r) edges in accordance with the relationships in the VF routing.
The r-type edges are paid for both ends, however p-type edges are only paid by the
customer. Note that in some of the following arguments, according to the direction of
traversing customer-provider links, I may write provider-to-customer link but these
terms refer to the same kind of edge. Thus the complete strategy space of player u is
Su = 3P\{u}, where the number 3 accounts for the third choice of node u, which is to
create no edge. Let s be a strategy vector containing the strategies of all players hereby
representing the current state of the game: s = (s0, s1, ..., sN−1) ∈ (S0, S1, ..., SN−1).
The graph G(s) =

⋃N−1
i=0 (i× si) represents the topology between the players.

Payoff – The goal of the players is to minimize their costs. The cost of player u
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Figure 2.1: Example for a VFF topology. In such a topology there could be two
type of nodes, T1 and not T1. T1s are connected by r edges, which are counted on
both sides in the cost function, however p edges are paid only by the customer, who
requested it. The flow of cash is visualized by arcs. According to this there are two
possible cost functions: (i) Cu = ϕrur = ϕr(|V (Kr)| − 1) and (ii) Cv = ϕp.

is defined as:
Cu(s) =

∑
v 6=u

dG(s)(u, v)︸ ︷︷ ︸
communication cost

+ϕpup + ϕrur︸ ︷︷ ︸
link cost

, u, v ∈ P (2.2)

where ϕx is the cost an edge of type x ∈ {r, p}, ux is the number edges of type x
and dG(s)(u, v) is the communication cost between u and v over G(s) given by:

dG(s)(u, v) =

{
0 if a VF path exists between u and v,
∞ otherwise.

(2.3)

In what follows I identify the Nash equilibrium of the game in different settings
of the parameters.

Definition 5 (Valley-free footprint (VFF)). A graph is a valley-free footprint if it
consists of (i) a clique Kr comprising peer (r) links only, and (ii) trees rooted at some
subset of V (Kr) having customer-provider links (p) only, such that for all provider-
customer connections the provider is always closer to their respective root than the
customer (see Fig. 2.1).

Theorem 2.1. A VFF is a Nash equilibrium if and only if
⌈
ϕp
ϕr

⌉
≤ |V (Kr)| ≤

⌊
ϕp
ϕr

⌋
+

1.

Proof. The proof consists of three parts: first I show that a VFF with
⌈
ϕp
ϕr

⌉
≤

|V (Kr)| ≤
⌊
ϕp
ϕr

⌋
+ 1 is a Nash equilibrium, secondly that a VFF with |V (Kr)| <

⌈
ϕp
ϕr

⌉



36 2.1. THE VALLEY-FREE GAME

or |V (Kr)| >
⌊
ϕp
ϕr

⌋
+ 1 is not and finally that a non-VFF topology cannot be a Nash

equilibrium.

1. A VFF topology with |V (Kr)| =
⌊
ϕp
ϕr

⌋
+1 is a Nash equilibrium: I show that no

player has anything to gain by changing his own strategy if others don’t change
theirs. Let Cu represent the cost of player u residing in the VFF. It is clear that
in a VFF every player can reach others through valley-free paths, hence in their
cost functions the communication cost is always zero (

∑
v 6=u dG(s)(u, v) = 0).

Moreover, it is clear that any meaningful state of the game permits valley-free
paths between arbitrary pairs of players (otherwise the cost of some player would
be infinite), so hereafter writing this term will be omitted.

(a) if |V (Kr)| ≤
⌊
ϕp
ϕr

⌋
+ 1 and u ∈ Kr:

Cu = ϕrur = ϕr(|V (Kr)| − 1) ≤ ϕr

⌈
ϕp
ϕr

⌉
(2.4)

If u wants to deviate then it will use some other strategy. The corre-
sponding cost is given by Cu′ = ϕrur

, + ϕpup
,. If up, ≥ 1 then Cu ≤ Cu

′,
since:

Cu = ϕrur = ϕr(|V (Kr)| − 1|) ≤ ϕr

⌊
ϕp
ϕr

⌋
≤ ϕr

ϕp
ϕr

= ϕp = Cu
′ (2.5)

If up, = 0 then again Cu ≤ Cu
′ since ur ≤ ur

, must hold to ensure valley-
free connectivity to all the other nodes. This holds because if ur > ur

,

then there is at least one node v ∈ Kr to whom u is not connected thus
cannot be reached from u via a valley-free path.

(b) if |V (Kr)| ≥
⌈
ϕp
ϕr

⌉
and u /∈ Kr:

Cu = ϕp (2.6)

up
, ≥ 1 is trivially not an option for u since that case immediately implies

Cu ≤ Cu
′. What remains is the case when u,p = 0. In this case to ensure

valley-free connectivity u has to create r edges to all other nodes residing
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in Kr. This would mean Cu′ = ϕr

⌈
ϕp
ϕr

⌉
, but even then Cu < Cu

′:

Cu = ϕp = ϕr
ϕp
ϕr
≤ ϕr

⌈
ϕp
ϕr

⌉
≤ ϕr|V (Kr)| = Cu

′ (2.7)

The cases (a) and (b) together imply that no node is able to deviate.

2. The VFF topology with |V (Kr)| <
⌈
ϕp
ϕr

⌉
or |V (Kr)| >

⌊
ϕp
ϕr

⌋
+ 1 is NOT a Nash

equilibrium: Easily if |V (Kr)| <
⌈
ϕp
ϕr

⌉
, then any leaf node u from a rooted tree

can lower its cost by joining Kr as:

Cu
′ = ϕr|V (Kr)| ≤ ϕr

(⌈
ϕp
ϕr

⌉
− 1

)
< ϕr

ϕp
ϕr

= ϕp = Cu (2.8)

Similarly if |V (Kr)| >
⌊
ϕp
ϕr

⌋
+ 1 then some node u ∈ Kr can lower its cost by

leaving Kr and connect to some other w ∈ Kr, w 6= u with a p edge.

Cu
′ = ϕp < ϕr

(⌊
ϕp
ϕr

⌋
+ 1

)
≤ ϕr(|V (Kr)| − 1) = Cu (2.9)

3. Finally I show that graphs differing from a VFF cannot constitute Nash equi-
libria. Let G be an arbitrary graph on which the valley-free connectivity is
satisfied, i.e., ∀u ∈ G : Cu 6= ∞. It is obvious that without this property G
cannot constitute a Nash equilibrium. In such graph let u be a node whose
strategy differs from the nodes in a VFF. The possible cases are:

(a) u has p edge: The strategy of the nodes in the VFF having p edges is
to pay for only a single p edge and nothing more (They can have other p
edges attached to them but these are paid by their customers, see Fig. 2.1).
Since u differs from this, the corresponding cost function is characterized
as:

Cu = ϕpup + ϕrur, up ≥ 1, ur ≥ 0 : (up, ur) 6= (1, 0). (2.10)

Now let the edge (u,w) be a p edge of u. Since w can reach every other
player via valley-free path, u also has valley-free paths to all others through
w. This means that u can delete its edges except the (u,w) edge, giving
Cu > Cu

′ = ϕp.
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(b) u doesn’t have a p edge: The cost function of u is:

Cu = ϕrur. (2.11)

The valley-free connectivity implies that every path from u to others starts
with one r edge which can be followed only by provider-to-customer edges.
Let t be the number of nodes having no p edges. Such nodes must be
the neighbors of u otherwise u cannot reach them. This imposes ur ≥ t.
Furthermore, for differing from VFF ur 6= t must also hold. In summary
we get ur > t. In this case u has edges (u,w) where w has a provider. Now
these edges can be deleted since u can reach w through its provider too.
This gives:

Cu = ϕrur > ϕrt = Cu
′ (2.12)

According to Theorem 2.1 aside from two trivial cases – (i) ϕp ≥ (n− 1)ϕr, when
the Nash equilibria is a tree, and (ii) ϕr > ϕp, when the Nash equilibria is a complete
graph – the Nash equilibria of this very simple game exhibits some level of structural
resemblance with the Internet AS level topology. As described in Sec. 1.2.1.2 on
the AS level topology there are only a few nodes in the whole network which can
reach every other node without purchasing service (i.e. without having a customer-
provider edge), such nodes are called tier-1 (T1). T1s are in a clique at the top of
the hierarchy, with having peering agreements set up among them. The rest of the
nodes are customers of T1s either in a direct or in an indirect way. These topological
features are clearly reflected by the results and now they can be understood as a
clear consequence of the VF policy. Theorem 2.1 also gives a rough estimation on the
number of T1 nodes as the function of edge costs.

2.2 The Highest Local Preference Game

Moving forward to the next fundamental, economically motivated policy rule I extend
the model by adding the HLP rule and define the Highest Local Preference Game.

Players and routing – Let P be the set of players (identified as the ASs)
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with cardinality N . Recalling the rule of HLP policy a player always picks from the
available VF paths according to its local interest, which is a preference ordering based
on the first edge of the path. Customer paths are favored over peer and provider paths
and peer paths are favored over provider paths. In this game I use the notations p
(or −→uv) and r (or uv) to denote customer-provider and peer edges, respectively. This
addition is important in order to keep the analysis clear and simple, as in several
times referring to edges with their endpoints - instead only their type - is preferable.

Strategies and topology – A strategy for player u ∈ P is a vector of the
preferred edges to other players in the AS network; i.e. the strategy space is the set
Su = {(suv)v∈P\{u} : suv ∈ {0, p, r}} where |Su| = 3N−1. Easily, player u seeks to
contact player v if suv ∈ {p, r}, otherwise suv = 0. Players announce their strategies
simultaneously. Any state of the game is represented by an undirected graph G(s) =

(P , E(s)) generated by the strategies of the nodes, where E(s) is given by E(s) =

{→uv|suv = p ∧ svu = 0} ∪ { uv |suv ∈ {r, p} ∧ svu ∈ {r, p}}. This settlement of the
edges reflects the rational behavior of the ASs as they prefer to create peer edges
over customer-provider edges and the instantiation of peer edges requires a bilateral
agreement between the corresponding players while customer-provider edges can be
created unilaterally. These can be summarized in Fig. 2.2.

0 p r

0 0 →
uv 0

p
→
vu uv uv

r 0 uv uv

svu
suv

Figure 2.2: The created edge according to the strategies of players u and v. The
customer-provider edges can be created unilaterally, but for peer edges both players
must bilaterally agree on the establishment. Note that if both players want to create
a customer-provider edge, then the financial considerations eventuate a peer edge.

Payoff – The goal of the players is to minimize their costs, which for a given
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player u is defined as:

Cu(s) =
1

N

∑
v 6=u

dG(s)(u, v)︸ ︷︷ ︸
communication cost

+ϕpup + ϕrur︸ ︷︷ ︸
link cost

, v ∈ P (2.13)

where

dG(s)(u, v) =



0 if there exists a VF path whose first edge is peer or provider-
customer

1 if there exists at least one VF path and the first edge of all
of them is customer-provider

∞ if a VF path does not exist
(2.14)

represents the price of communication between u and v over G(s) in compliance with
the VF and HLP policies, ϕp and ϕr are fixed maintenance costs of the provider and
peer edges, while up and ur refer to the number of p and r edges of u, respectively.
Note that the cost function in Eq. 2.13 is intentionally made as simple as possible for
two reasons. First I concentrate purely on the consequences of the two policy rules
thus I avoid incorporating cost elements that can mask them. The second reason is
simply analytical tractability. Basically the first sum in Eq. 2.13 represents the most
simple way of capturing VF and HLP rules and ϕp and ϕr are introduced for setting
up a meaningful game (e.g. without attributing costs to the edges the game would
end up in producing full graphs) but can be easily justified as inter AS links clearly
have maintenance costs. Also note that provider-customer edges are considered to be
financed unilaterally by the customer.

The Nash equilibrium of the game is a state such that no player can further reduce
her cost by altering her strategy unilaterally. In order to find topologies that are more
relevant to a realistic network game I used the following more natural and slightly
tailored equilibrium definition for this case:

Definition 6 (Pairwise Stable Nash Equilibrium (PSNE) [54]). We say G(s) con-
stitutes a pairwise stable Nash equilibrium if (a) it is a Nash equilibrium, (b) ∀uv ∈
E(G(s)) : Cu(s) ≤ Cu(s

′) ∧ Cv(s) ≤ Cv(s
′), where s′ differs from s only in deleting

one uv edge from G(s), (c) ∀uv /∈ E(G(s)) : Cu(s) ≤ Cu(s
′) ∨ Cv(s) ≤ Cv(s

′), where
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Figure 2.3: An example of the Spiderweb graph, the dashed and directed edges are
the peer and customer-provider edges, respectively and the black nodes are the ASs
of the clique K, i.e. the tier-1 ASs. The dotted triangle indicates the customer cone
of a tier-1 AS.

s′ differs from s only in adding uv edge to G(s) and (d) contains no provider loops
(cycle of p edges)1.

Now I am interested in the equilibrium topologies of the game as these topologies
will reflect on the consequences of VF and HLP rules. For these claims the following
definition is needed.

Definition 7 (Spiderweb graph (Fig. 2.3)). A graph is a Spiderweb graph if it consists
of:

1. a clique Kr (representing the tier-1 ASs) comprising peer edges only

2. trees rooted at some subset of V (Kr) that have customer-provider edges such that
the provider in the connection is always closer to the root than the customer

1This requirement is fully in line with the Gao-Rexford conditions [37] ensuring BGP stability.
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3. additional peer edges, such that ∀ uv , uw ∈ G(s) : t(v) ∩ t(w) = ∅, where t(x)

is the set of nodes in the subtree (i.e. the customer cone) of node x, including
x itself.

The first claim characterizes all meaningful states (i.e. where all the ASs can
communicate with each other) of the above game (and thus the AS topology) by
identifying a graph that is omnipresent in the Internet as a subgraph.

Theorem 2.2. Every meaningful outcome of the game, i.e.,
∑
Cu 6=∞ contains the

Spiderweb graph as a spanning subgraph and every pairwise stable equilibrium (PSNE)
of the game is the Spiderweb graph itself.

Proof. Imagine the customer-provider edges as "directed"2 edges (from-customer-to-
provider). We can say that the subgraph of the customer-provider edges is a spanning
DAG, as provider loops are not allowed. By having

∑
Cu 6=∞ the sinks of this DAG

have to be connected by peer edges in pairs. Hence the set of the sinks correspond to
the Kr clique of the Spiderweb graph.

Obviously each AS has a directed customer-provider path to some ASs of Kr. So
a spanning forest of the DAG and the Kr clique is a proper spanning Spiderweb graph
in the original graph.

Using Theorem 2.2 I can characterize the pairwise stable equilibria of the game.

Theorem 2.3. Every pairwise stable equilibrium (PSNE) of the game is the Spider-
web graph.

Proof. In the following I show that a PSNE topology is necessarily a Spiderweb graph
topology. I do this by giving a method which consists of three consecutive steps that
refer to the three features described in the Spiderweb graph definition and showing
that all of them must be satisfied otherwise there is at least one node that can deviate:

1. There cannot exist nodes without providers that are not connected by an r edge.
I can show this in two steps:

• There cannot exist a directed cycle of p edges : Definition 6/d.

2This does not influence the traffic as it may still flow in both directions. I use the expression
“directed” here only to be able to write the proof in a simpler way.
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• There cannot exist two DAGs with sinks not connected by an r edge: the
cost function of the sinks are infinite because they cannot reach each other
via a valley-free route, connecting them with an r edge establishes the
valley-free connectivity. As a consequence the sinks must constitute of a
clique of r edges which corresponds to the first feature of Spiderweb graph.

2. There cannot exist nodes with more than one p edge. Since one p edge is enough
for valley-free connectivity, a node can always delete an extra one without in-
creasing its cost function, which corresponds to the second feature of a Spider-
web graph.

3. There cannot exist an r edge such that uv , uw ∈ G(s) : t(v) ∩ t(w) 6= ∅. This
means that either t(v) ⊂ t(w) or t(w) ⊂ t(v) and by deleting the edge to the
node that is covered by the other the cost function of u can be improved, which
corresponds to the third feature of a Spiderweb graph.

The following theorem gives a high-level insight into the placement of the peer
edges, for which one more definition is necessary.

Definition 8 (Clear-cut Peer Edge (CPE)). An uv ∈ G(s) edge is a clear-cut peer
edge if:

• @w ∈ P : v ∈ t(w) ∧ uw ∈ G(s)

• ϕr < min{ |t(u)|
N
, |t(v)|

N
}.

In other words a CPE is a peer edge that is worth creating for both ASs, since i)
they have a disjoint set of customers and ii) each has a customer cone big enough to
make creating the peer edge profitable. A non-CPE is a peer edge that surely won’t
be created because at least one of the ASs would be better off without that edge.

Theorem 2.4. If G(s) constitutes a pairwise stable equilibrium (PSNE) of the game
then G is a Spiderweb graph with maxu∈Kr t(u) ≤ N(ϕp − ϕr(|V (Kr)| − 1) + 1) and
∀r ∈ Epeer \ EKr is a clear-cut peer edge (CPE).

Proof. The proof consist of three parts:
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1. If G is a PSNE then it is a Spiderweb graph: I have shown this in Theorem 2.3.

2. maxu∈Kr t(u) ≤ N(ϕp−ϕr(|V (Kr)|−1)+1): in other words does not exist node
u ∈ Kr with subtree big enough for leaving the clique. This can be shown easily
if we check the actual Cu cost inside Kr and the alternative Cu′ cost outside
Kr. Node u cannot leave if Cu ≤ Cu′ :

Cu = (|V (Kr)| − 1)ϕr ≤ Cu′ = ϕp +
N − t(u)

N
(2.15)

With a simple rearrangement we get:

t(u) ≤ N(ϕp − ϕr(|V (Kr)| − 1) + 1). (2.16)

3. Every r ∈ Epeer \ EKr is CPE: I prove this indirectly. Assume there ex-
ists a PSNE with r which is not a CPE. This means that either (i) ϕuv 6<
min{ |t(u)|

N
, |t(v)|

N
} or (ii) ∃w ∈ V (G(s)) : v ∈ t(w) ∧ uw ∈ G(s). For (i) it is

easy to see that at least for one node it is worth it to delete the edge, let this
node be u and the cost functions before and after deleting uv are Cu be Cu′ ,
respectively:

Cu = ϕp + urϕr +
N − t(u)− t(v)

N
> Cu′ = ϕp + (ur − 1)ϕr +

N − t(u)

N
(2.17)

For (ii) it’s trivial that for w it is worth it to delete uw . Let its cost functions
before and after the deletion be Cw and Cw′ , respectively:

Cw = ϕp + wrϕr +
N − t(w)

N
> Cw′ = ϕp + (wr − 1)ϕr +

N − t(w)

N
. (2.18)

Both cases lead to a contradiction.

Finally the theorems lead to the following three corollaries.

Corollary 1. In a PSNE a peer edge appears only if it is in Kr or both its endpoint
ASs have sizable customer cones.

Proof. This is a consequence of Theorem 2.4.
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Corollary 2. For PSNEs there exists an upper bound for the size of the customer
cones of the ASs in Kr, or more formally PSNE =⇒ maxu∈V (Kr) t(u) ≤ N(ϕp −
ϕr(|V (Kr)| − 1) + 1).

Proof. The cost of a node u ∈ V (Kr) is ϕr(|V (Kr)| − 1). However, if u leaves Kr

and creates only one customer-provider edge to another node in Kr, its cost would
change to N−t(u)

N
+ ϕp. Hence for a PSNE

ϕr(|V (Kr)| − 1) ≤ N − t(u)

N
+ ϕp,∀u ∈ V (Kr), (2.19)

and thus
max

u∈V (Kr)
t(u) ≤ N(ϕp − ϕr(|V (Kr)| − 1) + 1) (2.20)

Corollary 3. In case of a PSNE there exists an upper bound for the size of Kr

independent from N , i.e. PSNE =⇒ |V (Kr)| ≤
ϕp+ϕr+1+

√
(ϕp+ϕr+1)2−4ϕr

2ϕr

Proof. According to Corollary 2

max
u∈V (Kr)

t(u) ≤ N(ϕp − ϕr(|V (Kr)| − 1) + 1), (2.21)

and obviously
N

|V (Kr)|
= avg

u∈V (Kr)

t(u) ≤ max
u∈V (Kr)

t(u), (2.22)

hence
N

|V (Kr)|
≤ N(ϕp − ϕr(|V (Kr)| − 1) + 1). (2.23)

Dividing by N and rearranging the inequality we get:

0 ≤ −ϕr|V (Kr)|2 + (ϕp + ϕr + 1)|V (Kr)| − 1, (2.24)

It’s clear from (2.15) that the node with largest t(u) has the best chance for
deviation. So to get the tightest upper bound for |V (Kr)| we need to calculate the
minimal size of the biggest subtree, i.e. min(max(t(u))), and plug it into (2.15). For
max(t(u)) : {avg(t(u)) ≤ max(t(u)) ≤ N − |V (K)| + 1}, where avg(t(u)) = N

|V (K)| .
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DATA

By substituting a t(u) = avg(t(u)) in (2.15) we can get the upper bound |V (Kr)| ≤
ϕp+ϕr+1

√
(ϕp+ϕr+1)2−4ϕr

2ϕr
.

The above theorems deliver the following high-level sketch of the AS topology
as a main intuitive message: (i) it is a Spiderweb-like graph with a clique (of tier-1
ASs) in the center and trees routed at the nodes of the clique, (ii) the peer edges
appear more likely between ASs that have sizable customer cones, (iii) the size of the
clique is constrained by the maintenance cost of peer and customer-provider edges
and (iv) the largest customer cone size in the nodes of the clique is also driven by
these maintenance costs.

2.3 Discussion and double-checking against measure-

ment data

For validating the analytical results I used the AS Relationships dataset of May 2012,
provided by CAIDA [2]. Although this dataset received some criticism over the last
years, at this moment no other source of data is available that contains more accurate
tracing of the peer and customer-provider edges at the AS level.

This dataset contains AS-AS relationships for 41203 ASs with 57158 peer and
83374 customer-provider edges, thus enabling me to build a labeled AS graph. Re-
garding Theorem 2.2 and 2.3 I investigated the existence of the Spiderweb graph in
two steps. First I tracked the customer-provider relationships in a top-down manner
proceeding from the top tier-1 clique and kept all the nodes that could be reached, this
way I got a 92.5% node coverage which properly validates that the AS graph meets
the first two properties (clique inside and trees rooted on the nodes of the clique) of
Spiderweb graphs. Second, I examined how typical it is for an AS C with peering
neighbors A and B that t(A)∩ t(B) = ∅. In other words I calculated how typical it is
that the customer cones of the peers of an AS are overlapping (this is the direct check-
ing of the third property of Spiderweb graphs see Definition 7). For this I randomly
sampled the measured AS graph by choosing 500000 (A, B) node pairs for which
CA,CB exists. In each sample I drew AS C according to a degree-weighted probabil-
ity function and then I picked the peering neighbors with uniform distribution. The
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results confirmed that more than 75% of the pairs (Fig. 2.4) have zero overlapping
and in other cases the ratio of overlapping vanishes very quickly. These results readily
support the claim that the AS level Internet topology is a Spiderweb-like graph.
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Figure 2.4: CCDF for coverage overlapping of peer edges of an AS defined as x =
t(A)∩t(B)

min{t(A),t(B)}

After that as a next step I measured the peering likelihood between two ASs as
a function of the minimum of their customer cone sizes. The AS graph dataset of
Fig. 2.5 shows the empirical probability that two ASs with a given minimum customer
cone size (min{t(A), t(B)}) are in a peering relationship. The dataset supports that
the peering likelihood is highly correlated with the customer cone sizes of the ASs in
the peering relationship.

Finally, I present a short argument illustrating predictions on the maximum cus-
tomer cone size and the max size of the tier-1 clique. To do this I used historical
AS datasets from CAIDA. Based on the number of customer-provider and peering
relationships I estimated ϕp = Nc1

#of c-p edges and ϕr = Nc2
#of peer edges with c1 = 1.1 and

c2 = 0.05. Using these values I computed the results of the corresponding theorems
and measured the max conesize and tier-1 clique size as a function of time in the
CAIDA datasets. Fig. 2.6 shows that the rough estimation about the maximal cus-
tomer cone size in the AS level Internet approximates the measured one based on
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Figure 2.5: Peering likelihood between ASs as the function of their customer cone
size.

CAIDA snapshots to a reasonable extent.

Fig. 2.7 shows the prediction of the model regarding the size of the tier-1 clique.
Although the simple formulae forecast a more increasing trend, the order of magni-
tudes are quite the same in both cases.

As a discussion I first kindly call the reader to notice the complementary nature of
the game theoretical findings as opposed to the existing causality aware and causality
oblivious models. While these models concentrate on degree distribution, clustering,
diameter, etc., the game theoretic reasoning gives hints about spanning subgraphs,
peering likelihood and constraints on the size of different parts of the network. Also
recall that my model is extremely simple and squeezes all maintenance cost related
quantities into two constants (ϕr, ϕp). In the light of this simplicity it is remarkable
that the model gives practically usable predictions regarding the size of the tier-1
clique and the maximal customer cone of an AS.

One may argue that the results coming out of the analysis are somewhat weak
and don’t say too much about the AS network. Such criticism may seem to be fair
at first, but I find to be important and interesting in itself that the found topological
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Figure 2.6: Comparing the upper bound for max t(u) given by Corollary 2 (theory)
with the AS graph over time.

peculiarities (summarized in Theorem 2.2,2.3,2.4 and Corollary 1,2,3) are direct con-
sequences of the used BGP policies and thus will be present on the AS topology as
far as these policies are at use. I believe that showing this causality contributes to the
very limited amount of information about the Internet AS level topology. Finally, I
note that more powerful premises can lead to more precise topology characterization
in future works.

2.4 Summary

In this chapter I investigated the consequences of the BGP routing policy through its
two fundamental rules, the VF and HLP rules. For this I have designed an analytical
game theoretic model in which players are incentivized purely by these rules. In this
way I ended up with a model that is still analytically tractable and also allows us to
improve our interpretation of the Internet’s AS level system as it provides insights
complementary to the existing models.

During the analysis I identified a specific subgraph that can be understood as a
direct consequence of the VF and HLP policy rules. For future work directions, that
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Figure 2.7: Comparing the upper bound for |V (Kr)| given by Corollary 3 (theory)
with the AS graph over time.

can shed more light on the AS level topology, I would suggest to dig more deeply
into the Best Path Selection Algorithm of BGP and incorporate the AS path length
or various sources of traffic engineering in the premises of the models. On the other
hand I argue that the basic inter-AS business rules and other technological constraints
e.g. the role of IXP-s in the AS-AS connectivity, the multihoming opportunities or
security aspects (either in the pure form of supporting secure BGP) can be rich sources
of usable premises for future work.



Chapter 3

A Game Theory-Based AS Level

Internet Model (YEAS) [J2]

Using the analytical results of Chapter 2, in what follows I define a generative1 AS
topology model called YEAS that is able to create random topologies with similar
statistical features. Such a model provides the possibility to furher analyze those
statistical features that would be too complex to handle in the game theoretical
framework. Besides recovering the usual features of network models (e.g. power-
law degree distribution, large clustering, small diameter etc.) I implicitly encode the
outcome of the analysis into the node and edge dynamics. Thus finally I require
YEAS to produce Spiderweb-like graphs that have correct edge labeling, realistic
tier-1 clique size and realistic placement of the peer edges. The framework of YEAS
is based on the recently advocated hyperbolic space models presented in [62]. This
basically dresses up a very simple hyperbolic model with the findings of Chapter 2.

In the second part of this chapter I introduce the topology generation process
of YEAS, which consists of the node placement and edge creation phases. Then I
show that YEAS can readily recover power law degree distribution and high clustering
coefficient, which can be observed in a real AS topology. Then I turn to quantities
almost never tackled by the existing models. The first one is the expected customer
cone size of the nodes along with the cone size distribution of the whole network and

1Generative here means that the created network is the result of a deterministic link creation
process, in which the connectivity behavior of nodes is described by an algorithm (the Barabási-
Albert model is a good example for generative models).

51
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the second one is the peering likelihood of two nodes as the function of their customer
cone size. Finally, I compare YEAS generated AS topologies with a potpourri of
existing models.

3.1 Topology Generation Process

Node layout

The nodes are distributed (still representing the ASs) quasi-uniformly on the surface
of a hyperbolic disk with radius R. This is done by assigning polar coordinates to
each node as follows:

r = (1/α) acosh (1 + [cosh(αR)− 1]U1) (3.1)

φ = 2πU2 (3.2)

where U1 and U2 are independent random variables distributed uniformly over the
interval (0, 1) and α is a parameter controlling the heterogeneity of the layout.

Edge creation

To initialize take node u with the lowest radius and initialize a set K = {u}2. In
the first phase take nodes w one by one in an increasing order of their radii rw and
connect them to the others according to the following simple rule. If

Q
∑
v∈K

l(rw, φw, rv, φv) < min
v|rv≤rw

l(rw, φw, rv, φv), (3.3)

then connect w to all nodes in K with peer edges and add w to K, otherwise connect
w to node argminv|rv≤rw l(rw, φw, rv, φv) with a customer-provider edge. The constant
Q is a tunable model parameter controlling the size of K and

l(ru, φu, rv, φv) = acosh(coshrucoshrv − sinhrusinhrv cos(φu − φv)). (3.4)

In the second phase every node u /∈ K connects to a node v with a peer edge if
2In YEAS this set represents the clique of tier-1 ASs.
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@ −→uv ∧ l(ru, φu, rv, φv) < %, where % is a parameter in the interval (0,R) for tuning
peering willingness. The pseudocode of the complete process is shown in Figure 3.1
for the sake of reproducibility.

initialization:

1. set ru = (acosh(U ∗ (cosh(R)− 1)) + 1) and φu = 2πU for each node u;

2. sortedIDs = sort nodes according to ru;

3. K = {First(sortedIDs)}, E = {};

Phase 1:
for w → sortedIDs do

if
∑

v∈K l(rw, φw, rv, φv) < minv|rv≤rw l(rw, φw, rv, φv) then
forall v ∈ K do E = E

⋃
wv;

K = K
⋃
w;

else
v = argminv|rv≤rw l(rw, φw, rv, φv);
E = E

⋃−→wv;
Phase 2:
for ∀(u, v) : u /∈ K ∧ @ −→uv do

if l(ru, φu, rv, φv) < % then
E = E

⋃
uv

Return(E);

Figure 3.1: The pseudocode of YEAS

3.2 Features of the Generated Topologies

Due to the fact that YEAS is designed based on the results of the game theoretic
analysis and existing hyperbolic models the generated topologies have some implicit
features like realistic power law degree distribution, clustering coefficient, customer
cone size distribution and peering likelihood. In the following I prove these features
one-by-one.
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Realistic Power Law Degree Distribution and High Clustering Coefficient

For proving the ability of YEAS to generate a realistic power law degree distri-
bution it is necessary to show that the model generates all edges (u, v) for which
l(ru, φu, rv, φv) < % but contains edges (u, v) for which l(ru, φu, rv, φv) > % with negli-
gible probability. The first statement follows trivially from the edge creation process
itself. The second one is the direct consequence of equation (3.7), that is exists if the
distance between two points u and v is greater than %, the probability that an edge
between these two points is smaller 3 than e−δe

%
2 . (See the derivation of (3.7) later

in this subsection). In the case of some provider edges it is possible that l > % but
compared to all the edges the number of these are negligible.

If we simply and arguably ignore (at least from the point of view of degree distri-
bution and clustering) the negligible number of edges of length larger than %, we end
up with a model readily analyzed in [62]. Nevertheless I recall the most important
claims for making the argument self-contained. The expected degree of a node with
coordinates (r, φ) is the number of expected points within its %−distance vicinity.
Equivalently, this coincides with the expected number of points falling inside the in-
tersection of the original R−disk and the disk with radius % and center (r, φ). In the
case when 0.5 < α ≤ 1 the degree of a node with radial coordinate r decays exponen-
tially as the function of r (approximately independently from α), k̄(r) ∼ e−

r
2 , while

the node density exponentially increases, ρ(r) ∼ eαr. The combination of these two
exponentials yield a power law degree distribution P (k) ∼ k−2α−1, and complement
any cumulative degree distribution F̄ (k) ∼ k−2α [17, 76]. It can be rigorously shown
that there exists a constant lower bound on the global clustering coefficient in hy-
perbolic random graphs, which confirms the high clustering claimed in such networks
[43].

Fig. 3.2 shows the cumulative degree distribution of the real AS graph compared
to the degree distribution of YEAS with setting N = 40000, Q = 5, α = 0.55,
% = 12.95 and R = 18.5 (I use this setting for all the simulations from now on). The
measured AS graph contains 41203 nodes, so I generated a similar-sized topology.
The clustering coefficient for the AS graph and for YEAS are both as high as 0.38
and 0.69, respectively. Table 3.1 provides additional metrics for comparison.

3For reasonable a value of N = 40000 and % = 12.53 this probability is 0.00135



CHAPTER 3. MAINTHESIS2 55

1 5 50 500

1e
−

04
1e

−
02

1e
+

00

F
(k

)

k

AS graph
YEAS
slope −1

Figure 3.2: CCDF of degrees in the real AS graph and in the YEAS topology.

Realistic Customer Cone Size Distribution

Now turn to the expected customer cone size of the nodes and the cone size distribution
of the whole network. Building upon these results I will be able to quantify the peering
probability of the nodes not residing in K. To analyze the average customer cone sizes
I temporarily omit the peer edges generated by the model as these do not affect the
customer cone sizes.

Let p(s, φ, r) denote the probability with which node u with radial coordinate s
and angle φ establishes a provider link to node v with radial coordinate r and angle4

0 provided that s > r. Recall that node u establishes a customer-provider link to
node v if and only if s > r and node v is the closest to node u. The equivalent
geometrical meaning of this condition in the generation model is that none of the
other N − 2 points fall within the intersection of the circle with radius s (with the
same center as of the R−disk) and the (s, φ)− centered circle with radius l(s, φ, r, 0).
With using elementary hyperbolic geometrical properties the area of the intersection

4The angle coordinate of node v can be assumed to be 0 without loss of generality.
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Table 3.1: Comparison of a YEAS generated topology and the CAIDA topology by
basic metrics.

Network Nodes Edges C. coef. Avg. dist.
CAIDA top. 41203 116930 0.38 3.81
YEAS 40000 115309 0.69 4.07

Network Avg. degree Diameter Max. cluster # Tier-1
CAIDA top. 5.67 14 39327 16
YEAS 5.76 12 40000 16

of these circles can be well approximated (if l(s, φ, r, 0) is not very close to 0) as

Aintsec ≈ 4e
l(s,φ,r,0)

2 . (3.5)

Now the probability that none of the other N − 2 points fall within this intersection
area can be formulated as (

1− Aintsec

AR−disk

)N−2

≈ e−δAintsec (3.6)

where δ = N
AR−disk

is defined as the average node density. The approximation of
p(s, φ, r) is now resulted as

p(s, φ, r) = e−δ4e
l(s,φ,r,0)

2 . (3.7)

The expected customer cone size, which is a function of r T̄ (r), r = 0, . . . , R,
fulfills the following integral equation.

T̄ (r) = 1 +N

∫ R

s=r

∫ 2π

φ=0

T̄ (s)p(s, φ, r)ρ(s)dφds . (3.8)

where ρ(s) = sinh(u)
2π(cosh(R)−1)

is the node density function. The intuitive explanation
of Eq. 3.8 is the following. The customer cone of a node v with radical coordinate
r consists of itself and all other nodes’ cones with larger radial coordinate s > r

and any angle coordinate φ, which are connected to node v by probability p(s, φ, r).
To reformulate this equation the following approximations are used: ρ(s) ≈ 1

2π
es−R,
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δ = N
AR−disk

≈ N
πeR . By applying these the integral equation becomes

T̄ (r) = 1 +
δ

2

∫ R

s=r

T̄ (u)

(∫ 2π

φ=0

e−4δe
l(s,φ,r,0)

2 dφ
)
esds . (3.9)

The inner angle integral can be well approximated as 1
δ
e
−s−r

2 . This provides the
following (approximate) form of the integral equation:

T̄ (r) = 1 +
1

2

∫ R

s=r

T̄ (s)e
s−r
2 ds . (3.10)

The solution of this integral equation gives the function T̄ (r). Unfortunately it
can not be solved analytically, however, the solution can be readily characterized as
an exponential function. The detailed investigation of the numerical solution con-
firms this intuition as for a wide range of radial coordinates r the function T̄ (r) is
approximately proportional to e−r.
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Figure 3.3: CCDF of customer cone sizes in the real AS graph, theory and in the
YEAS topology.

Now I can analyze the complement cumulative distribution of cone sizes F̄T (x) =

P (T > x). The CCDF of the cone sizes is approximately5 power-law with exponent
5In case of sparse networks, the conditional distribution of T (r) is Poissonian with mean T̄ (r),
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−1 provided the expected cone size r is proportional to e−r, that is, P (T > x) ≈ x−1 .
Fig. 3.3 readily supports this result as the theoretical result goes hand in hand with the
outcome of the simulations. Comparing the real AS topology I detect slightly smaller
customer cone sizes produced by YEAS. This is definitely the lack of multihoming
in the current version of the model. In the AS graph there are many ASs that have
multiple providers in order to increase reliability, thus many AS contributes to the
cone size of multiple ASs. Nevertheless the tendency of the cone size distribution is
correctly recovered by YEAS, although the exponent is not exactly the same.

Realistic Peering Likelihood

Finally I can turn to analyzing the peering likelihood Ppeering of two nodes having
expected customer cone sizes T̄1 and T̄2. More explicitly, I determine the peering
probability as the function of min(T̄1, T̄2) . For this, first the peering probability of
two nodes with radial coordinates r1 and r2 as the function of max(r1, r2) is calculated,
then the function r(T̄ ) (the inverse function of T̄ (r)) is applied. Without loss of
generality, assume that r1 < r2. Given r2, the nodes with smaller radial coordinates
r1 < r2 lie within the circle with radius r2 and center 0. Clearly, among these nodes
those have peer edges to node r2 which lie in the intersection of this disk and the r2

centered %−radius disk. Therefore, due to the uniform distribution of the nodes the
peering probability is the ratio of this intersection area and the area of the 0-centered
disk with radius r2 . Evidently, the peering probability is 1 if r2 <

%
2
, because in this

case the 0-centered disk with radius r2 is fully contained in the r2−centered %−radius
disk. If r2 >

%
2
it can be shown by elementary hyperbolic geometry that

Ppeering(r2, %) ≈
arccos

(
cosh2(r2)−cosh(%)

sinh2(r2)

)
π

+
exp(%) arccos

(
cosh(r2) cosh(%)−cosh(r2)

sinh(r2) sinh(%)

)
π exp(r2)

. (3.11)

P (T (r) = x) = T̄ (r)x

x! e−x. Deconditioning this w.r.t. r results in a distribution approximately
proportional to x−2, therefore the CCDF of T will be approximately proportional to x−1 .
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A more detailed analysis of this approximation discloses that it is well approximately
proportional to e−r2 . From this a simple approximation can be obtained as

Ppeering(r2, %) ≈

{
1 if r2 <

%
2

e
%
2 e−r2 if r2 ≥ %

2
.

(3.12)

It follows that

Ppeering(T̄2, %) ≈

{
1 if T̄2 > T̄ (%

2
)

1
T̄ ( %

2
)
T̄2 if T̄2 ≤ T̄ (%

2
) .

(3.13)

This means that the likelihood of peer edges of an AS that have a customer cone
size to other ASs which have larger customer cone sizes is proportional to their cone
size, and this likelihood tends to be 1, if the cone size is above a certain limit. This
characteristic property is also confirmed by the simulations shown in Fig. 3.4 and
coincides with results measured on the real AS topology.
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Figure 3.4: Peering likelihood between ASs as the function of their customer cone
size (here I extended Fig. 2.5 by adding results about the YEAS generated topology).

The above theoretical results show that YEAS generates realistic complex net-
works with proper degree distribution, clustering and diameter, yet incorporates the
findings of Section 2 as the synthesized topologies are Spiderweb-like (trivially follows
from the generation process), with tunable tier-1 clique (through the Q parameter)
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and realistic peering likelihood.

3.3 Comparison with Existing Work

To compare the AS topologies generated by YEAS I outline its features (Table 3.2)
against a potpourri of existing models. The intention behind this by no means com-
prehensive potpourri was to cover many sides of the spectrum of models used for
generating AS topologies. Several of these models were already introduced in Sec-
tion 1.3.2.2, so here I only shortly recall their most important features. PLRG [4],
Inet [97] and dk-Series [68] belong to the group of so called causality-oblivious [30]
topology generators. All three models introduce various mathematical approaches
to generating networks imitating the features of their real-world counterparts in a
black-box fashion. The unmissable Barabási-Albert (BA) [9] model is the very first
topology generator exhibiting causality-awareness thus generating complex networks
using processes (preferential attachment and incremental network growing) assumed
to take place in networks. BRITE [73] incorporates the findings of power-laws, the
skewed node placement and the locality network connection during the topology gen-
eration process that can be fine tuned by parameters offering multiple choices. SIM-
ROT [31] generates labeled hierarchical topologies that include BGP relationships.
To generate realistic AS topologies it uses a huge number of input parameters which
can be determined based on the available AS measurement datasets. GENESIS [65]
is a computational game-theoretic model that simulates the AS network formation
process and produces different equilibrium topologies. It contains several rules and
constraints for realistically mimicking incentives of the ASs like geographical presence,
traffic, economic attributes, valley-free routing etc. The model of Holme et al. [47] is
similar in spirit to GENESIS but it doesn’t contain peering and realistic routing.

The features of these models are summarized in Table 3.2, where in the last row
the properties of YEAS are also displayed. One can see that most of the models gen-
erate unlabeled graphs thus completely ignore the nature of AS-AS relationships and
concentrate only on the complex network face of the AS topology. Closest to my result
lie SIMROT and GENESIS which can generate Spiderweb-like labeled AS topologies
and realistic peering likelihood, however, these models require a huge number of in-
put parameters adjusted very carefully to produce realistic topologies. Moreover as
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GENESIS executes a complex simulation in the background it cannot produce large
(> 1000 ASs) topologies within reasonable time limits. The YEAS model can gen-
erate large AS topologies with correct labeling and peering statistics while requiring
only a handful of input parameters.

Feature Notation Feature Notation

Degree distr. P Labeled L

Clustering C Spiderweb-like SL

Avg. distance D Peering likelihood PL

Large size S Few input params FP

P C D S L SL PL FP

C
.o

bl
iv
io
us PLRG 3 - 3 3 - - - 3

Inet 3 - 3 3 - - - 3

dK-series 3 3 3 3 - - - 3

C
au

sa
lit
y
aw

ar
e

BA 3 - 3 3 - - - 3

BRITE 3 3 3 3 - - - 3

SIMROT 3 3 3 3 3 3 3 -

H. et al. 3 3 3 3 - - - -

GENESIS 3 3 3 - 3 3 3 -

YEAS 3 3 3 3 3 3 3 3

Table 3.2: Comparison of network models.

3.4 Summary

In this chapter I designed a generative AS topology model, based on the previous
results about VF and HLP policies called YEAS, that is able to produce networks
bearing statistical features similar to the Internet. I also gave a proof for this in
the case of power-law distribution, high clustering coefficient, customer cone size
distribution and peering likelihood. Finally, I compared the topologies produced by



62 3.4. SUMMARY

YEAS with topologies created by CAIDA measurements and several other models
along the usual metrics and I got fairly similar results, even though, YEAS was not
intended to be a realistic topology generator, but more of a context in which the
findings can be verified.



Chapter 4

Topological Consequences of Greedy

Navigation [J3, C1]

Greedy navigability is a central issue in the theory of complex networks (Section 1.2.2),
as it provides great communication efficiency in small words. A plausible explanation
for the favorable navigational properties in such context is the assumed existence of a
hidden metric space underneath these networks. Ever since the introduction of Klein-
berg’s lattice model [58] game theoretical investigation has been focused on explaining
how such a network emerges due to the interaction of rational, selfish players. How-
ever, existing work assumes shortest path routing when measuring distance between
nodes. There are several reasons why this view is limited, but the most important
one is that since greedy routing is frequently used in both social and computer net-
works [13] to great success then it is worth to consider “Why calculate the shortest
path based equilibrium if players know they will route in a greedy manner?”. Con-
sidering greedy routing is also preferable because in the context of the current (and
more so the future) Internet, both the need for global topology knowledge hindered by
autonomy and policy issues and the linearly scaling router memory requirement [39]
raise scalability issues suggesting that shortest path routing has its limitations.

As a consequence, in network games greedy routing looks like a prime candidate
to be studied. It is Even-Dar and Kearns [33] who come closest as they present a
game played on a Kleinberg-like grid, where nodes create extra edges with a proba-
bility decreasing with distance according to a power law. Teh authors determine the
equilibrium graphs according to shortest paths then show that greedy routing works
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reasonably well on these graphs. Therein lies a contradiction: equilibria are calculated
by shortest paths, but players do route in a greedy manner. In this case, players do
not implement their equilibrium paths.

Figure 4.1: Deviation of shortest and greedy paths in the 2D Euclidean grid between
nodes (2, 2) and (0, 0).

In the followings I propose the Greedy Network Formation Game (GNFG) to in-
corporate network creation economics (missing in network models) and navigability
(missing in network games) in a single framework. As an extension to network cre-
ation games I assume a hidden metric space underneath the network and use the
length of greedy paths as the measure of distance between players. Since shortest
and greedy paths deviate in essence (see Figure 4.1) this shift substantially change
the corresponding equilibria.

Before introducing the game let us recall the pioneering result of Kleinberg [58, 59]
on greedy routing on Euclidean lattices, as it is used extensively in the arguments
that are based on the analytical results, which are described later in this chapter.

Theorem 4.1. (Kleinberg) Suppose that network nodes are placed in a 2-dimensional
Euclidean lattice. From each node u one shortcut is added to every other node v the
topology according to the distribution P (u, v) ∼ l(u, v)−r, where l(u, v) is the lattice
distance between u and v. On this topology the expected delivery time of greedy routing
is:

E(t)=


C1 log2(n) if r = 2,

C2n
(2−r)/3 if 0 ≤ r < 2

C3n
(r−2)/(r−1) if r > 2.

,
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As Kleinberg states this result readily generalizes to lattices with higher dimen-
sions.

4.1 The Greedy Network Formation Game

I define the Greedy Network Formation Game (GNFG) using Euclidean lattices, since
the question is whether the Kleinberg-like grid network can emerge from the game.

Players, lattice and greedy routing – Let P be the set of players (identified
with network nodes) with cardinality N . Players are placed into the vertices of
a D-dimensional n× n× · · · × n︸ ︷︷ ︸

D times

lattice (i.e. n is the length of the lattice in each

dimensions, so nD = N), which is folded into a torus. The coordinate vector u =

(u1, u2, . . . , uD) of player u indicates the position of u in the lattice. Distance between
two players u and v used in the greedy routing decision is calculated as their lattice
distance:

l(u, v)
def
= l(u,v) =

D∑
i=1

min{|ui − vi|, n− |ui − vi|}. (4.1)

A greedy routing step of player u operates over this metric space by choosing the
neighbor whose lattice distance is the smallest from target t. If u has no neighbor v
such that l(u, t) > l(v, t) then greedy routing is in a local minimum and fails.

Strategies – A strategy for a node u ∈ P is to create a set of directed edges
(arcs) to other nodes in the network; the strategy space is Su = 2P\{u}. Let s be a
strategy vector: s = (s0, s1 . . . sN−1) ∈ (S0, S1 . . . SN−1) and G(s) be the graph defined
by the strategy vector s as G(s) =

⋃N−1
i=0 (i × si). A mixed strategy is a probability

distribution over the above (pure) strategies.

Payoff – The goal of the players is to minimize their cost function which is
calculated as follows:

Cu(s) =
∑
u6=v

dG(s)(u, v)︸ ︷︷ ︸
communication cost

+ ϕ|su|︸ ︷︷ ︸
link cost

, u, v ∈ P , (4.2)

where dG(s)(u, v) is the number of nodes involved in the greedy routing process be-
tween u and v (including v itself) over G(s) and ϕ is the constant cost of creating
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one arc. By definition if greedy routing fails between u and v then dG(s)(u, v) = ∞.
This setting ensures that we get connected topologies in which there always exists a
greedy path between any arbitrary pair of nodes.

Special cases for ϕ

The following statements characterize the equilibria of the game for special regions
of ϕ.

Theorem 4.2. If 1 < ϕ = O(N), any graph emerging from any NE or social optimum
in the GNFG possesses the D-dimensional lattice as a subgraph.

Proof. I prove this statement by indirection. Suppose that there exists a Nash equi-
librium E or social optimum O in which an arc between player u and v is missing,
where l(u, v) = 1. In this case for all neighbors k of player u, l(k, v) ≥ 1 = l(u, v).
This means that when u receives a message with destination v, the greedy forwarding
process reaches a local minimum and fails causing the cost of player u to be infi-
nite. In this case, it is worth it for u to create arc (u, v) thereby lowering its cost,
which means that E cannot be a NE. Since the game has a trivial finite cost solution,
namely, the complete graph, O cannot be a social optimum.

Theorem 4.3. If ϕ = Ω
(
N1+1/D

)
then the D dimensional lattice is a unique NE in

GNFG.

Proof. Theorem 4.2 shows that the arcs of the D-dimensional lattice are contained in
any possible NE. Now I show that assuming ϕ = Ω(N1+1/D) there exists a sufficiently
large lattice for which the NE contains exclusively the arcs of the lattice. It is easy
to see that the sum of lattice distances from player u to all other players is given by:

∑
v 6=u

l(u, v) = DnD−1

⌊
n2

4

⌋
. (4.3)

Now consider a state when u (and possibly other players) have additional arcs besides
the lattice arcs. It is worth it for u to delete one of its extra arcs if

∑
v 6=u

d(u, v) + (2D + ku)ϕ <
∑
v 6=u

de(u, v) + (2D + ku + 1)ϕ, (4.4)
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where ku is the degree of player u, while de(u, v) and d(u, v) denote the greedy distance
between u and v if there exists an arc between u and e or does not, respectively. From
(4.4) we get a satisfactory condition for ϕ:

∑
v 6=u

d(u, v)−
∑
v 6=u

de(u, v) <
∑
v 6=u

l(u, v)−
∑
v 6=u

de(u, v) <
∑
v 6=u

l(u, v) < ϕ.

By using (4.3) we obtain:

DnD−1

⌊
n2

4

⌋
< ϕ = Ω

(
N1+1/D

)
If this condition is met, then u will eventually delete all its extra arcs.

I illustrate that this bound is tight by calculating the exact threshold for ϕ if
D = 1 and N is even and N mod 4 = 0. In this case the average lattice distance is

∑
v 6=u

l(u, v) =

(
N

2

)2

, (4.5)

and the best possible arc, which minimizes the cost of u is

min
∀e

∑
v 6=u

de(u, v) =
N

2

(
N

4
+ 1

)
− 1. (4.6)

This difference of the two gives the condition for ϕ:

O(N2) =
N2

8
− N

2
+ 1 < ϕ. (4.7)

Theorem 4.4. If ϕ < 1 then the full graph is a unique NE in the GNFG.

Proof. The trivial observation

∑
v 6=u

d(u, v)−
∑
v 6=u

de(u, v) ≥ 1,

immediately proves the statement of the theorem.
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4.2 Simplified Greedy Network Formation Game

Deriving results for the GNFG in the region 1 < ϕ = O(N1+1/D) turns out to be a
highly non-trivial problem. For the sake of tractability, in the following I restrict the
argument to the one dimensional case and introduce the Simplified Greedy Network
Formation Game (SGNFG). I will generalize the results later on. From Theorem 4.2
one can see that any equilibrium or optimum solution of a Greedy Network Formation
Game in one dimension always possesses the ring as a subgraph. Therefore I will play
the SGNFG on a bi-directional ring, which implies that greedy routing will never fail.
On this ring I define the SGNFG as follows: each player can create one directed edge
only, which means that the strategy space reduces to a scalar eu, which indicates the
endpoint of the extra edge for player u ∈ P . This also means that any player u will
have a cost of 3ϕ < cu <∞.

When seeking for equilibrium solutions I will use mixed strategies, which means
that the strategy of u is a random variable X indicating where to connect its extra
edge. As for the distribution P (X = v) = pv, pu = pu−1 = pu+1 = 0 and

∑
v∈P pv = 1

hold. Throughout the analysis I - as Kleinberg did - assume that the distribution
PX ∈ P is decreasing and monotone, formally, pv ≤ pw if l(u, v) > l(u,w) and
w /∈ {u− 1, u, u+ 1}. This assumptions is fairly realistic, since otherwise the network
does not bearing the properties of the underlying space and renders greedy routing
meaningless. Let A(u, v) denote the average number of greedy steps required to get
from u to v.

Theorem 4.5. The cost of the optimal solution to the SGNFG is O(N2 log2(N)).

Proof. Theorem 4.1 shows that there exists a distribution X which guarantees that
the expected length of greedy paths between any pair of players A(u, v) is O(log2(N)).
Assuming that ϕ is constant, it follows from this result that the cost for player u is:

cu =
∑
v 6=u

A(u, v) + 3ϕ = O(N log2(N)),

which gives
∑

u∈P cu = O(N2 log2(N)) as the optimal solution.
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Price of anarchy in the SGNFG

Theorem 4.6. The bi-directional Möbius ladder [46], in which the extra edges of
each player are directed at exactly the opposite player on the one dimensional ring
(see Figure 4.2), is always a Nash equilibrium with total cost N

3

2
. The price of anarchy

in the SGNFG is therefore of Ω
(

N
log2(N)

)
.

Figure 4.2: Möbius ladder with 24 players.

Proof. If each player is connected to the opposite player in the ring, greedy forwarding
starting from player u cannot use the shortcuts of any other player, just its own.
Therefore it is enough to show player u’s best choice in the empty ring. Without loss
of generality consider the player with coordinate 0 and assume that its extra edge is
connected to a player whose coordinate δ ≤ N

2
. To simplify the argument I identify

the players with their coordinates and use their name and coordinate interchangeably.
For the corresponding greedy step, player 0 chooses:

• player 1 towards players 1, 2, . . . , d δ
2
e,

• player δ towards players d δ
2
e+ 1, . . . , bN+δ

2
c − 1,

• player N − 1 towards players bN+δ
2
c, . . . , N − 1.

Let a = d δ
2
e and b = bN+δ

2
c. The average distance of player 0 from all the other
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players can be calculated as:

1

N

 d δ2 e∑
i=1

i+
δ∑

i=d δ
2
e+1

(1 + δ − i) +

bN+δ
2
c−1∑

i=δ+1

(1 + i− δ) +
N−1∑

i=bN+δ
2
c

(1 +N − 1− i)


=

1

N

(
a∑
i=1

i+
δ−a∑
i=1

i+
b−δ∑
i=2

i+
N−b∑
i=1

i

)
=
N − 2

2N
+

(a2 + (δ − a)2 + (b− δ)2 + (N − b)2)

2N
.

(4.8)

With the substitution of a and b:

a2+(δ−a)2+(b−δ)2+(N−b)2 =
δ2

2
+

(N − δ)2

2
+

1

2
I(N odd)+I(N even and δ odd).

Using the inequality between arithmetic and quadratic means we get:

δ2

2
+

(N − δ)2

2
≥
(
δ + (N − δ)

2

)2

=

(
N

2

)2

.

In order for u to optimize its cost it needs to find the δ that minimizes this expression.
Since u cannot use arcs of others δ can be chosen as the topology would be an empty
ring. The equality holds if and only if δ = N

2
meaning that the best choice is the

player at the exact opposite position in the ring, which implies that the Möbius ladder
[46] is a Nash equilibrium. In this case each player has a cost c = N2

8
+ O(N), and

the total cost is
∑

u∈P cu = N2

8
N + O(N2). The worst case Nash equilibrium of the

game is therefore of Ω(N3), which implies that the price of anarchy is Ω
(

N3

N2 log2(N)

)
=

Ω
(

N
log2(N)

)
.

Price of Stability in the SGNFG

To determine the price of stability in the SGNFG I now seek for the best available
Nash equilibrium. In the following I give a counting argument on this equilibrium
in the space of mixed strategies. Instead of working with particular graph instances
and aggregating their properties for getting the expected costs, I conduct the analysis
on a “stochastic” graph. When investigating the outcome of a greedy step at a given
player I treat the graph such that the extra outgoing edge is generated at the time
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the greedy routing step is performed by the player. This way I bypass the tedious
work with exact deterministic graph structures and determine the expected costs in
a direct manner similarly to [59]. To obtain equilibrium solutions the following two
lemmas are needed. Let Ae(u, v) denote the average number of greedy steps from u

to v if player u has its extra edge connected to player e.

Lemma 1. The larger the distance between two players, the more number of greedy
steps is needed to travel between them on average. Formally: If l(u, v) ≤ l(u,w), then
A(u, v) ≤ A(u,w) for u, v, w ∈ P.

Proof. To prove this statement it is enough to show that if l(v, w) = 1 and l(u,w) >

l(u, v), then A(u, v) < A(u,w). Without loss of generality let u = 0. I prove this
statement by induction on v. If v is 0, +1 or N − 1 the statement is true. Assume
that for 0, 1, N−1, . . . , (v−1), N−(v−1) the statement holds. I prove the statement
for points v and N − v, however it’s enough to show for 0 ≤ v < v + 1 ≤ N

2
, because

A(0, v) = A(0, N − v). This means that the target is to show that:

0 ≤ A(0, v + 1)− A(0, v) =
N−1∑
j=2

[Aj(0, v + 1)− Aj(0, v)]pj.

First, notice that player 0 uses its extra edge as the first hop towards player v if the
extra edge is connected to player j and 2 ≤ j ≤ 2v − 2, otherwise player 0 uses the
edge of the lattice which is connected to player 1, since v < N

2
. Therefore:

A(0, v) =
N−2∑
j=2

Aj(0, v)pj =
2v−2∑
j=2

(1 + A(j, v))pj + (1 + A(1, v))
N−2∑

j=2v−1

pj, and

A(0, v + 1) =
N−2∑
j=2

Aj(0, v + 1)pj =
2v∑
j=2

(1 + A(j, v + 1))pj + (1 + A(1, v + 1))
N−2∑

j=2v+1

pj.

If j > 2v then Aj(0, v + 1)− Aj(0, v) = (1 + A(1, v + 1))− (1 + A(1, v)) = A(0, v)−
A(0, v − 1) ≥ 0 holds because of the induction hypothesis. If j = 2v then A2v(0, v +
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1)− A2v(0, v) = A(2v, v + 1)− A(1, v) = 0 ≥ 0. If j = 2 or j = 2v − 1, then

[A2(0, v + 1)− A2(0, v)]p2 + [A2v−1(0, v + 1)− A2v−1(0, v)]p2v−1

= [A(2, v + 1)− A(2, v)]p2 + [A(2v − 1, v + 1)− A(1, v)]p2v−1

= [A(0, v − 1)− A(0, v − 2)](p2 − p2v−1) ≥ 0

holds because of the induction hypothesis and the third assumption. Finally, if j ∈
[3, 2v−2] then by investigating them pairwise, j ∈ {v−a, v+1+a} for a = 0, 1, . . . , v−3

we have:

[Av−a(0, v + 1)− Av−a(0, v)]pv−a + [Av+a+1(0, v + 1)− Av+a+1(0, v)]pv+a+1

= [A(v − a, v + 1)− A(v − a, v)]pv−a + [A(v + a+ 1, v + 1)− A(v + a+ 1, v)]pv+a+1

= [A(0, a+ 1)− A(0, a)](pv−a − pv+a+1) ≥ 0.

Hence A(0, v+ 1)−A(0, v) =
∑

j[Aj(0, v+ 1)−Aj(0, v)]pj ≥ 0 implying that A(0, v)

is monotonically increasing.

Lemma 2. If player u chooses a more distant player to connect its extra edge then
the cost of u reduces. Formally:

∑
x∈P

Av(u, x) ≥
∑
x∈P

Aw(u, x), if l(u, v) ≤ l(u,w).

Proof. To prove this statement it is enough to consider the case when l(v, w) = 1.
Without loss of generality let u = 0 and assume that w = v + 1 ≤ N

2
. Similarly to

(4.8):

∑
x∈P

Av(0, x) = (N − 1) +

d v
2
e∑

x=1

A(1, x) +

bN+v
2
c−1∑

x=d v
2
e+1

A(v, x) +
N−1∑

x=bN+v
2
c

A(N − 1, x),

∑
x∈P

Av+1(0, x) = (N − 1) +

d v+1
2
e∑

x=1

A(1, x) +

bN+v+1
2
c−1∑

x=d v+1
2
e+1

A(v + 1, x) +
N−1∑

x=bN+v+1
2
c

A(N − 1, x).
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The second sum in the second equation can be rewritten as:

bN+v+1
2
c−1∑

x=d v+1
2
e+1

A(v + 1, x) =

bN+v+1
2
c−2∑

x=d v+1
2
e

A(v + 1, x+ 1) =

bN+v+1
2
c−2∑

x=d v+1
2
e

A(v, x).

Hence

∑
x∈P

Av+1(0, x)−
∑
x∈P

Av(0, x) =

d v+1
2
e∑

x=d v
2
e+1

A(1, x)+

d v
2
e∑

x=d v+1
2
e

A(v, x)−
bN+v

2
c−1∑

x=bN+v+1
2
c−1

A(v, x)−
bN+v+1

2
c−1∑

x=bN+v
2
c

A(N−1, x).

Depending on the parities of v and N the difference is:

N is even N is odd

v is even A(1, v
2

+ 1)− A(v, N+v
2
− 1) A(1, v

2
+ 1)− A(N − 1, N+v−1

2
)

v is odd A(v, v+1
2

)− A(N − 1, N+v−1
2

) A(v, v+1
2

)− A(v, N+v
2
− 1)

Using the fact that A(u, v) is a monotonic and increasing function of l(u, v), none
of the differences are positive if v + 1 ≤ N

2
, which is the maximum distance in the

ring.

From Lemma 1 and 2 one can intuitively conclude that choosing a distant node
as the endpoint of the extra edge reduces the cost of a player. Therefore, in case
of mixed strategies heavy-tailed distributions are of special interest because of the
monotonicity of pv, since they provide the highest chance for connecting the extra
edge to a distant node. Now I show that the best strategy a player can have at any
stage of the game is to uniformly choose among other players. The cost of player u
is:

cu =
∑
v 6=u

A(u, v) =
∑
v 6=u

∑
j∈P\{u−1,u,u+1}

Aj(u, v)pj,

which can be transformed to
cu =

∑
s∈S

psf(s). (4.9)

Theorem 4.7. If f(s) is a monotonically decreasing function of l(u, u+s) then in any
given situation of the SGNFG, player u’s best response to the strategies of the other
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players is to choose the endpoint of its extra link uniformly at random. Formally:
argminp∈P

∑
s∈S psf(s) = uniform.

Proof. I prove this statement by indirection. Let us suppose that p does not have a
uniform distribution, then let be player v and w, that l(u, v) < l(u,w) and pv > pw,
and for every other x ∈ P : l(u, x) ≤ l(u, v) or l(u,w) ≤ l(u, x). Let T1 = {x :

l(u, x) ≤ l(u, v)} and T2 = {x : l(u, x) ≥ l(u,w)}, it is easy to see that S = T1 ∪· T2.
The cost cu can be written as follows:

∑
s∈S

psf(s) =
∑
x∈T1

pxf(x) +
∑
y∈T2

pyf(y) = P(T1)

∑
x∈T1 pxf(x)∑

x∈T1 px
+ P(T2)

∑
y∈T2 pyf(y)∑

y∈T2 py

(4.10)

While f is decreasing then minx∈T1 f(x) ≥ maxy∈T2 f(y) and obviously f isn’t
constant, so maxx∈T1 f(x) > miny∈T2 f(y), hence∑

x∈T1 pxf(x)∑
x∈T1 px

>

∑
y∈T2 pyf(y)∑

y∈T2 py
(4.11)

Now a new distribution can be created p∗, which is also decreasing, so p∗ ∈ P, and

∑
x∈T1 p

∗
xf(x)∑

x∈T1 p
∗
x

=

∑
x∈T1 pxf(x)∑

x∈T1 px
and

∑
y∈T2 p

∗
yf(y)∑

y∈T2 p
∗
y

=

∑
y∈T2 pyf(y)∑

y∈T2 py
(4.12)

but p∗(T1) < p(T1) and p∗(T2) > p(T2), so
∑

s∈S psf(s) >
∑

s∈S p
∗
sf(s) p∗ can be

defined as if x ∈ T1 then p∗x = αpx and y ∈ T2 then p∗y = βpy, where α < 1 and β > 1.
There are two conditions to determine α and β:

αP(T1) + βP(T2) = 1 and αpv ≥ βpw (4.13)

If α = pw
pwP(T1)+pvP(T2)

and β = pv
pwP(T1)+pvP(T2)

then p∗ has the properties was
discussed above. It means if p is not the uniform distribution, it cannot be optimal.

Corollary 4. The only Nash equilibrium of the SGNFG with mixed strategies is the
case when all players connect their extra edge uniformly at random.

Now that there is a clue for the structure of the network in equilibrium states,
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the cost of such equilibria can be calculated by borrowing again from the results of
Kleinberg.

Theorem 4.8. The best Nash equilibrium of the SGNFG is Ω(N8/3), therefore the
price of stability is Ω

(
N2/3

log2(N)

)
.

Proof. It is shown in [58] that if every player connects its extra edges by the uniform
distribution (pv ∼ l(u, v)0) then the expected length of the greedy paths between two
players is of Ω(N2/3). From this, the total cost is Ω(N8/3) and the price of stability
is Ω

(
N2/3

log2(N)

)
.

According to [58] from the distributions of the form pv ∼ l(u, v)−r, r = D eventu-
ates the only setting that produces a small-world topology, where the length of the
greedy paths scales polylogarithmically with N . The conclusion from Corollary 4 is
that r = 0 is the only possible setting to obtain a Nash equilibrium. This immediately
leads to the following observation:

Proposition 1. Kleinberg’s optimal setting is not a Nash equilibrium, therefore small-
world equilibrium solution does not exists for the SGNFG.

This means that the previous investigations that first determine the equilibrium
graphs according to shortest path and then show the efficiency of greedy routing
actually work with a model that cannot emerge in a self-organizing way.

4.3 Generalization of the Results

In the previous section I presented the in-depth analysis of the SGNFG and drew the
negative conclusion that incorporating greedy routing within the network creation
game takes the equilibrium topologies very far from the social optimum. Moreover
I showed that a small-world network cannot be an equilibrium solution of the game.
One might argue that the results may be valid only within the simple framework of
the SGNFG. Here I take a quick look at the statements in more general settings of
the game.
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Multiple edges

In the simplified setting a player could have only one extra edge in addition to its
lattice edges, however, in a general case a player can have multiple edges. Now I
argue that if each player u can only afford a constant number of edges Cu then the
equilibrium solution remains qualitatively the same. In the multiple edge case the
cost of player u can be transformed to the form cu =

∑
s∈S psf(s) similarly to the

single extra edge case (see (4.9)). Theorem 4.7 proves that the uniform distribution
minimizes such cost functions. This also means that the best strategy that player u
can have is to distribute its Cu edges uniformly in the lattice.

Distance-dependent link costs

In a general setting the cost of an edge may depend on the distance between its
endpoints, which gives the more complex cost function

cu =
∑
v∈P

pv

(
ϕ(u, v) +

∑
x∈P

Av(u, x)

)
=
∑
s∈S

psf(s). (4.14)

In this case however, f(s) is not necessarily monotonic, which means that the previous
argument about the uniform distribution being the only NE does not work in this
case. However it can be shown that a distribution which eventuates strict Nash
equilibrium is uniform until a given lattice distance and zero otherwise.

Theorem 4.9. If p ∈ P then ∃f() for which p is a weak Nash equilibrium. If p ∈ P
is a strict Nash equilibrium, then ∃r ∈ (0, 1) so that ps ∈ {0, r}.

Proof. The proof of the first statement is very simple. Let ϕ(u, v) = C−
∑

x∈P Av(u, x),
hence cu = C

∑
v∈P pv = C independent of the distribution of the extra link. So ps is

a weak NE.
The second statement can be proved similarly as Theorem 4.7. The only difference

is that
∑
x∈T1

pxf(x)∑
x∈T1

px
is not necessarily larger than

∑
y∈T2

pyf(y)∑
y∈T2

py
, in this case α and β

should be such that α > 1 and β < 1. The solution of p∗ is not worse than the
solution of p. If there exist v and w that pv > pw > 0, than ps can’t be a strict Nash
equilibrium.

Proposition 2. A small-world topology can’t be a strict Nash equilibrium.
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Proof. From Theorem 4.9 we know that if p is a strict NE then ∃δ that pv = r for
l(u, v) < δ and pv = 0 for l(u, v) > δ. Now the results can be applied from [58]
for the uniform distribution (similarly as in the proof of Theorem 4.8) on the region
where pv = r, hereby getting a lower bound 1

N

∑
v∈P A(u, v) = Ω(δ2/3). To achieve

a small-world network, δ has to be smaller than (log n)α, but in this case if l(u, v) is
big enough then A(u, v) ∼ n

(logn)α
, implying that the average greedy distance can’t be

polylogarithmic.

Multiple dimensions

For the sake of simplicity I carried out the proofs for the one dimensional case. In the
following I illustrate that the argument can be extended to the finite D-dimensional
case. First observe that the simple statement of Lemma 1 (the more distant a player
is the more greedy steps are needed to travel between them) is the only result where
the one dimensional assumption is exploited. Now I illustrate that Lemma 1 readily
generalizes to higher dimensions.
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Figure 4.3: The average number of greedy steps (A(u, v)) between a reference player
u = (0, 0) and the other players in the two dimensional lattice, if pv ∼ l(u, v)0 (left),
pv ∼ l(u, v)−1 (center), pv ∼ l(u, v)−2 (right).

Figure 4.3 shows the average number of greedy steps (A(u, v)) required to travel
between a reference player (at the center of the figure) and the other players in the
two dimensional lattice. If w denotes the neighbor of u who is closest to v, then
A(u, v) can be calculated by following recursion:

A(u, v) =
∑
x∈P

pxAx(u, v) =
∑

x:l(x,v)<l(w,v)

px(1+A(x, v))+

1−
∑

x:l(x,v)<l(w,v)

px

 (1+A(w, v)).
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Figure 4.3 supports the conjecture that A(u, v) grows with the lattice distance if the
game is played in multiple dimensions.

Conjecture 1. Small-world topologies cannot emerge as equilibria from the SGNFG
even if the dimension of the lattice is raised to an arbitrary constant value. This
means that the existence of small-worlds cannot be economically justified under the
Kleinberg-like constant dimensional grid-based models.

Note that the situation fundamentally changes when the dimension can depend on
the number of players. For example if the number of dimensions can be of Ω(logN)

the number of steps needed to travel between players trivially drops to O(logN).
Fraigniaud and others show a similar phenomenon for log logN [36].

4.4 Hyperbolic Space

The results support the claim that small-world networks cannot be equilibrium so-
lutions of the Greedy Network Formation Game even if the game is played under
fairly generalized conditions. So the question arises: “How can small-world topologies
emerge?” What can then be the incentive of the players to eventuate an asymp-
totically optimal solution? The recent triumph of hyperbolic space based models in
explaining the intricate properties of the internet’s topology [62] and the successive
application of the hyperbolic space based techniques in problems related to distributed
routing techniques like greedy embeddings [60] lead to the idea of investigating the
GNFG in the hyperbolic space. In the hyperbolic space I prove that socially optimal
solutions can readily emerge from the Greedy Network Formation Game.

For the investigation I use the Poincaré disk model [7] of the two dimensional
hyperbolic space as this model makes the calculations easier here. In this space
player u has a coordinate vector u = u1, u2 ∈ [0, 1) and the distance between u and
v is calculated according to the Poincaré distance function:

dp(u, v)
def
= dp(u,v) = arccosh

(
1 + 2

||u− v||2

(1− ||u||2)(1− ||v||2)

)
,

where ||x|| stands for the Euclidean norm of x.

The players are placed at equal distances from each other similarly to the case of
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the two dimensional Euclidean lattice, thus the players will be located in the vertices
of a so-called hyperbolic tessellation (see Figure 4.4). A tessellation [56] can be
characterized by a pair (ν, κ) where ν stands for the vertex number of its constituent
polygons and κ denotes the number of meeting polygons at a given vertex. For (ν, κ),
1
ν

+ 1
κ
< 1

2
must hold. A graph T (V,E) can be constructed from the tessellation if its

vertices are considered as the vertices of the graph and the sides of the polygons as
edges.

Figure 4.4: (3,8) (left) and (4,5) (middle) hyperbolic tessellations and the average
distance between the vertices in the (4,5) hyperbolic tessellation as a function of the
number of vertices (right).

In this setting of the GNFG, similarly to the Euclidean game the following lemma
holds.

Lemma 3. Any graph emerging from any Nash equilibrium or social optimum in the
two dimensional hyperbolic GNFG possesses the underlying tessellation graph T as a
subgraph.

Proof. The proof of this statement is very similar to the proof of Lemma 4.2 and is
thus omitted.

Of course similarly to Euclidean lattices greedy routing readily routes through
the tessellation by finding paths successively between arbitrary pairs of players. In
the following I show that the length of these paths are of O(logN). Let us define
the layers of a tessellation as follows: the starting polygon is layer 0, then raising
κ polygons over every vertex of the starting polygon yields layer 1, layer m + 1 is
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derived accordingly from layer m. Let us call the newly added vertices in each step
as the "perimeter" of layer m.

Lemma 4. The number of vertices in a (ν, κ) tessellation grows exponentially with
the number of layers, thus the diameter of the tessellation graph T is of O(logN).

Proof. Let κ ν-gons meet at each vertex. There are three cases according to ν

• If ν = 3 then from 1
ν
+ 1
κ
< 1

2
we get κ ≥ 7. At each vertex on the perimeter of the

m-th layer at most 3 triangles meet, thus each vertex has at least (κ − 4) ≥ 3

neighbors on the perimeter of (m + 1)-st layer. Since two neighbors on the
perimeter of the m-th layer have at most one common neighbor on the (m+ 1)-
st layer, each vertex on the m-th layer generates at least 2 vertices on the
m+ 1-th layer.

• If ν = 4 then κ ≥ 5. Each vertex on the m-th layer has at least (κ − 4) ≥ 1

tetragon whose other vertices are on the (m + 1)-st layer, hence each vertex
generates at least three other on the next layer.

• If ν ≥ 5, then I calculate the number of edges on the layers’ perimeter instead
of the number of vertices. Each edge on the perimeter has another polygon on
the next layer, these polygons have ν−3 ≥ 2 edges on the perimeter of the next
layer, hence the number of vertices is at least twice as large.

From Lemma 4 we can see that using only the edges of the tessellation (without any
extra shortcut edges) player v can be reached from u in O(log(N)) number of greedy
steps (see Figure 4.4). The total cost of the GNFG is therefore of O(N2 log(N)),
which is better than the social optimum for Euclidean case.

4.5 Summary

Numerous theoretical and empirical studies confirm that real-world complex networks
lend themselves to be effectively searched by greedy algorithms. However, the exist-
ing game theoretical models on network formation, which were summoned to justify
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the emergence of such networks, rely exclusively on shortest path calculations when
estimating the cost of communication among players. I have characterized networks
which emerge from the network formation games if players calculate their costs based
on the length of the greedy routes between each other. The results support the claim
that small-world topologies cannot emerge as equilibria from the interaction of selfish
players under the Kleinberg-like grid-based model. I also showed that changing the
underlying metric space from Euclidean to hyperbolic simply generated small-world
topologies as equilibrium solutions with lower total cost than the optimal solution
under the Euclidean version. These findings promote hyperbolic Greedy Network
Formation Games for future investigations to explain other network properties like
heterogeneous degree distribution and strong clustering.



Chapter 5

Application Opportunities

To conclude the dissertation here I discuss how the obtained results can be used to
further extend our knowledge about the topology of complex networks. In this chapter
I list some application scenarios for each chapter where results are introduced.

Topological Consequences of the BGP routing policy

Internet specific knowledge can greatly help to improve the performance of the net-
work. The more insight we gather on how BGP drives the topology formation of
the Internet’s AS level network the easier it is (i) to design better routing policies,
(ii) to understand why and how the traffic emerges and (iii) to optimize the current
network structure. The most specific example is clearly the area of Content Delivery
Networks (CDN) [79], where global topological peculiarities are highly exploited e.g.
in surrogate and cache placement strategies or request routing mechanisms. Note that
CDN is just a narrow segment of the whole spectrum. To give a few more examples,
the placement of data centers [42], peer-to-peer networks [22, 66], traffic engineering
[8], business based AS peering strategies [26] can also largely benefit from Internet
topology related knowledge. The investigation of the AS topology is also a popular
topic in the network science community that consolidates researchers from diverse or
multidisciplinary research areas [14, 15, 5, 21, 98, 70, 84].

82
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A Game Theory-Based AS Level Model (YEAS)

Topology generators are often used in diverse testing processes of different applica-
tions. Testing of novel routing policies, traffic handling or security algorithms requires
realistic topologies that have some randomness but bear similar statistical features
to real networks at the same time. Certainly the needs are not exactly the same in
all cases, so the topology generators can be categorized along the needs they serve.
YEAS can be useful in situations when quickly generated large topologies with the
characteristics of the Internet’s AS level network are needed, including labeled nodes
and connections according to business considerations.

Topological Consequences of the Greedy Navigation

Greedy routing is the most accepted policy in describing the communication process
of real-world complex networks. We have empirical evidences (e.g. the Milgram
experiment) that in many cases this method enables efficient information distribution
among network nodes. However, creating a game that explains the emerging process
of such networks had been a non-trivial issue in game theory until recently. My results
are cited in two papers, by Yang et. al [99] and Gulyás et. al [44], where the authors
manage to explain the emergence of such networks.
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